

Improved Long Term Creep Model for Fossil Energy Power Plants

Jifeng Zhao, Abhinav Saboo, Ida Berglund, Jason Sebastian, Prof. Greg Olson, Jiadong Gong (PI) QuesTek Innovations LLC (in collaboration with Northwestern Univ. and NIMS)

Project Objective

Develop a physics-based creep model as a function of stress, temperature, and microstructure evolution that is capable of predicting long term creep behaviors (~300,000 hrs) of advanced structural alloys of power plant components.

Systems	Processing	Microstructure	Properties	Performance
design	Cool-down / heat-up cycles	Protective oxide surface	Creep strength Microstructural	Creep resistance >700°C
chart	In-field welding (no post-weld heat -treatment)	Matrix composition -Avoid TCP phases	Stability Fatigue Strength	Thermal Fatigue Resistance
	Fabrication: cold-work and welding	Creep-strength dispersion -slow kinetics	Toughness	Steam-side Corrosion Resistance
	Homogenization & Hot rolling	Grain size	Coefficient of Thermal Expansion	Fire-side Corrosion Resistance
	Melting & solidification	Primary solidification inclusions	Oxidation Resistance (SO _x , NO _x , Alkali)	Thermal
			Thermal conductivity	

Method and Results

Use Case: Long Term Creep of Grade 91 Ferritic Steel in Fossil Energy Power Plants

Since the life-time of a power plant can be in excess of 30 years, the qualification of such newly developed materials/ alloys could be as long as the service life required. To enable the deployment of new generation materials for advanced power generation technologies in the future, more efficient, accurate, and user friendly computational methods for long term (to 300,000 hrs. operating life) prediction of materials behavior in fossil energy systems need to be developed.

Extrapolation of short-term creep data to long term creep is over-estimating the creep rupture life

Red (Fe, Cr)₂₃C₆ Blue VX Green NbX White Z-phase (Cr,V, Nb)N

The microstructure evolution during long term service is the key of modeling long term creep behavior

Development of Microstructure-Sensitive Mechanistic Creep Model

QuesTek Model Development Road Map

- Fundamental creep mechanisms implemented.
- Microstructure dynamics simulated.
- Long term creep rate as a function of (Temp, stress, initial

microstructure).

- Validated with existing creep data (100,000h).
- Extendable to describe creep
 behavior to greater than 300,000 h
 (~30 years).

Effects of applied stresses

Excellent agreement achieved between model prediction and experimental data (NIMS) indicates fundamental creep mechanisms are properly implemented.

Modeling on Microstructure Evolution

Model Integration in FEM Simulation

RESEARCH PLANS for Phase II

In summary, in this Phase I SBIR program QuesTek has developed a dynamic microstructure-sensitive creep model to predict the long-term creep behaviors based on the fundamental creep mechanisms. Thermodynamic and kinetic of microstructure evolution during creep has been modeled using QuesTek in-house software package and databases. Phase II efforts will include: (1) Microstructure characterization using LEAP experiments; (2) Extension of microstructure modeling capabilities using *PrecipiCalc*®; (3) Extension of creep models to

weldments/heat affected zone (HAZ) in 9-12% Cr ferritic steel; (4) Component-level FEM simulation using base and weldment materials,

which will enable structural optimization with improved creep performance and elongated creep life.