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Introduction
Direct Power Extraction (DPE): The concept of directly 
converting thermal/kinetic power to useable electrical power.
Magnetohydrodynamics (MHD): The branch of physics which 
describes the interaction of an electrically conductive fluid 
with a magnetic field.

P is the power density
B is applied magnetic field
σ is gas-plasma conductivity
u is gas-plasma velocity
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Motivation & Benefits

• Increased power generation efficiency
• Topping on existing cycles
• New combined cycles
• Synergy with CO2 capture 

• Fuel Flexible 
• Thermal power input

• Compact Generation
• Small footprint & potentially 

portable
• DC Power Output

• Future grid transmission?
• Dynamic Load Response

• Good for grid performance and 
reliability
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Outline
FY17 NETL RIC Activity Focus - Energy Conversion Engineering 

• Oxy-Fuel Combustion Plasma Conductivity Analysis & Experiment

• Computational MHD Tool Development For Analysis & Design

• HVOF Heat and Mass Balance Simulation & Experiment

• Photoionization Simulation & Experiment
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Combustion & Ionization
Predictive Model

• Compiled relevant electron-molecule MTCS data
• Model conductivity uses existing approaches

• Combustion & species from Cantera
• Considering both electron-ion & electron-

molecule collisions
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Comparing predictions versus legacy experiments

Combustion and Ionization

Very limited validation data
• high uncertainty
• disagreement between sources

Note: conductivity model presented here is slightly new and uses different H2O 
cross section then prior reports (and current NETL MHD 1D code results in slides). 

Data Sources: Brogan (1963) & Dixit (1986) 

K mass fraction
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Combustion Validation Testing
Directly measure electrical conductivity of seeded oxy-fuel flame

• Using well-defined flame environment (Hencken burner)
• 3 independent measurements needed

• Electrical conductivity via Langmuir double probe
• Gas temperature via spectroscopy
• Atomic potassium concentration via spectroscopy

• Full seed vaporization challenge (lab scale), Currently:
• Syringe pump of ~50/50 aqueous solution of K2CO3

to O2 line
• Spray solutions and discard large drops
• Eliminate water droplets by diffusion drying
• Thus small K2CO3 conveyed to burner w/ O2

• Langmuir probe tip durability
• Trying both platinum or tungsten tips
• Short insertion times, via rapid traverse system
• Calibration in aqueous solutions

K Seeded Oxy-fuel Flame
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Computational Tool Development
NETL’s MHD Engineering Design Code

• 1D Flow of  a multi-phase mixture in varying area channel  
interacting with an electro-magnetic field and external 
circuit

• Current Activities

• Comparison of  equilibrium vs. non-equilibrium predictions

• Input parameter sensitivity studies

• Additional developments to further refine of  supersonic flow capabilities xxyyEM
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• Compare different code outputs downstream of  nozzle throat to 
published simulation data for H2-Air scramjet [Huang, 2015]

1D code with Finite Rate Chemistry
Computational verification for non-equilibrium chemistry

• Code outputs consistent w/ literature downstream of  nozzle throat

• Note temperature results (expected to impact MHD Power)
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• Inputs

• Fuel: C12H26

• Oxidant: 100% O2

• Combustion Pressure = 3 Bar

• Seed: K2CO3 powder; K mass loading 4.94% by weight of  
total inputs

• Input Temperatures: 300K

• Aspects for Analysis

• Complete combustion & seed decomposition

• No wall heat losses

• Fixed Mach channel (2.1 M)

• Results

• Non-Equil chemistry important for supersonic Oxy-MHD 
consideration

• Equil and Non-Equil do converge for fixed Mach channel

• Results suggest seed kinetics also matter

1D code with Finite Rate Chemistry
The impact on supersonic Oxy-MHD Electrical Conductivity – An Example Problem
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• Segmented Faraday Background
• Jy limits practical MHD power densities

• Channel width : Electrode width ~ 75:1

• Electrode width : Insulator width ~ 2:1

• 3D Approach
• Comsol Multi-Physics AC/DC platform

• Neglect Lorentz Force on flow
• OK for short channel section evaluation

• Virtual resistors as generator loads

• Electrical conductivity considered as a tensor

• Results
• Jy non-linearly distributed on surface

• With βH on, J does not follow voltage gradient

• Peak currents at electrode-insulator corners

• Different for anode versus cathode

Design for Current Density
What is “Jy” in 3D?

Note: Dimensions exaggerated for illustration purposes

Plasma flow
Direction

Mag field
In/out page

Anodes

Cathodes
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Current Density Results
Results shown are for a “Continuous” Linear Faraday Generator

β = 0

β = 2

• B & u profiles off
• Heat transfer off
• Fixed plasma properties
• No arcing or boundary layers
• Corners filleted w/ 

conductivity profile
• Reduces numerical 

instability & error to 
achieve verification 
(next slide)

• Real system likely 
different (b/c arc 
behavior)
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Current Density Results
Computational verification with a “Continuous” Linear Faraday Generator

Normalized power output versus generator Hall 
Parameter (β= 0) with Kref = 0.5

• 3D results verified vs. analytical solution for simple generator
• Tool useful to optimize electrode & insulator geometry
• Design for complexities

• B, u, sigma profiles
• Non-standard loading and geometries
• MHD edge effects near channel ends
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High Velocity Oxy-Fuel (HVOF) System
Characterizing Heat Balance in HVOF

Simulation

• Customized Praxair JP 8200 HVOF utilized
• Kerosene-Oxygen Combustion
• 6-8 bar combustion
• ~160 kWt Input Power 
• Cold copper wall heat transfer

• Use calorimetric method from cooling water 
temperature and mass flow measurements

Cooling H2O in
Cooling H2O out

Kerosene

Combustion
Chamber

CD
Nozzle Barrel/Channel

Atomizing
Injector

O2

Air

Exit

Establish a baseline cold wall heat transfer rate for future supersonic oxy fired MHD channels

• customized OpenFOAM model
• “sonicParcelFoam”
• Reaction mechs adapted for dodecane
• Convective: using wall functions
• (y+ = yuτ/ν ~ 2) B.L.

• Sensitivity study on-going
• Radiative: P1 grey gas



15

HVOF in action
Video from IR camera (See later slide for additional details)
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Simulation Results of HVOF
Gas temperatures for Cold wall HVOF

• 1D: 1D NETL 
MHD code 
output

• 3D: openFOAM
• Shocks can be 

seen in 3D Temps
• Maintains very 

hot core ~3000K   
• Cross section T of 

flow rapidly 
stratifies near 
HVOF exit

Combustion
chamber

CD
Nozzle

Barrel (future MHD channel)

3D- burner center line

3D- Cross section 
average

1D-NonEquilib-Frozen

1D-NonEquilib

1D-Equilib

Free Jet
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Combustion
Chamber

CD
Nozzle

Barrel (Future MHD Channel)

Simulation Results of HVOF
Wall Heat Transfer for Cold wall HVOF

• Peak velocities 
~2100 m/s

• Peak heat flux at 
throat
• ~700 W/cm^2

• Cold Channel Wall
• ~300 W/cm^2

• Flux increases with 
mass flow (thermal 
input)
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HVOF Total Wall Heat Transfer
Experiment versus simulation

• For expected stochiometric conditions, ~20% of 
input power went to wall cooling

• Sensitivity to mass flow changes similar for 
simulation and experiment

Experiment Data

• Simulation and experiment differ on conditions for peak transfer
• Simulation assumes pre-vaporized fuel & pre-mixed 

reactants  predicts complete kerosene consumption
• Experiment results suggests complete combustion may not 

be fully achieved in these tests
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Thermal Radiation
Irradiative measurements and shock structure with CO2 IR imaging

Further experiments will characterize total radiation fraction. Can fuel rich cases provide advantage?

• Infrared camera w/ CO2 bandpass filter (4370nm ± 10nm) 
• High temperature blackbody for radiance calibration

• Wide angle radiometer measures total irradiance from the plume
• spectral region of 0.15-10 µm

• fuel riches cases have higher radiance
• Additional combustion/soot in jet

• Shock structure apparent
• cfd simulation comparisons underway
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Magnesia (MgO) Rod Test
Direct Insertion of high temp refractory into free jet (gross temperature check)

Custom pyrometer constructed using CCD spectrometer; Multi 
two-color method employed

Exposed 
Surface 

Temperatures

Receptor to CCD 
Spectrometer

MgO rod surface

HVOF free jet

• Measured temperatures consistent with HVOF expectations
• Technique used in materials exposure work
• MgO rod does survive this test
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Photoionization
General description and testing

• Combustion driven MHD plasma is a partially ionized system which 
rapidly reaches thermal equilibrium

– Very little seed introduced thermally ionizes (~1-3% of it)

• Ionization potential of K is 4.34 eV

– So “photoionization” of potassium using UV photons < 285nm

– UV source must be efficient enough to make sense for bulk ionization > 
10% efficiency past gross estimate (Rosa, 1963)

• Directed energy with lasers = Good spatial & temporal control

– Boundary layer arc control and manipulation possible

• “Help” electrons travel from plasma to cooler electrode

– Due to arcs the boundary  already likely in non-equilibrium

• Experimental approach

– Test set-up: Potassium seeded HVOF fired into a 2T magnet and excite 
with multiple pass pulsed 248nm Excimer laser.

– Initially characterize total laser absorption measurement as test 
conditions change 

– Later apply high speed K1 Spectroscopy (<1ns acquisition times)

Shake down testing of seeded HVOF in magnet

“Lilac” color is from thermally  excited K
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Photoionization Simulation
CFD Photoionization Modeling and Simulation

• Under development  (in OpenFOAM)

• Customization of  radiation and reaction sub-
models
• Photon as reactant

• Infinitely Small Weight (ISW) method for calculating laser 
propagation using the discrete ordinate method (DOM)

• Generalize boundary conditions for reflection and 
transmission

• Photon absorption coefficient is linked to photo-ionization 
reaction coefficient

Non-equilibrium term

Laser 
Intensity

Electron
density

Preliminary Simulations of NETL 
Photoionization Experiment
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• Oxy-fuel combustion plasma conductivity predictions highly uncertain
• Validation testing very difficult to execute but underway

• Supersonic combustion driven channels need non-equilibrium considerations
• We have added this to NETL’s 1D MHD engineering code

• Hall Parameter, load factor, and optimized channel/electrode/insulator dimensional 
ratios are need to correctly predict power output performance
• We have developed a tool which can correctly assess these complicating factors

• HVOF heat transfer rates measured are very high but simulations can predict them
• Likely need much higher wall temperatures for efficient energy conversion 

• Photoionization provides new options as UV laser technology develops
• We are testing to obtain basic properties for this technique

Conclusions
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