Physics-based Creep Simulations of Thick Section Welds in High Temperature and Pressure Applications

Thomas M. Lillo, PI Wen Jiang, Co-Investigator Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415 Thomas.Lillo@INL.gov

2017 NETL Crosscutting Research & Analysis Program Portfolio Review, March 20-23, 2017, Pittsburgh, PA Date: March 22, 2017

DOE Award Number: FEAA90

Period of Performance: 07/2015-07/2018

5 mm

Project Goals and Objectives

Goal: Develop modeling and simulation capabilities to describe/predict the creep behavior of thick section welds in Alloy 740H

- Computational modeling development of physical processes involved in the creep of welds in Alloy 740H across length scales:
 - Diffusion
 - Dislocation motion and deformation
 - Microstructural evolution
 - Uniaxial creep specimen behavior
- Develop/modify individual computational "modules" to describe each physical process:
 - Dislocation glide/climb
 - Dislocation/γ' interaction
 - γ' shearing
 - Dislocation climb over γ' particles
 - Dislocation looping of γ'
 - Incorporate experimental microstructures and their evolution
 - Diffusional creep
 - Grain boundary sliding

Project Goals and Objectives - cont.

- Experimental Validation
 - Creep tests different stresses and temperatures
 - $-\gamma$ ' aging
 - Weld
 - HAZ
 - Base metal (if necessary)
 - Threshold stress as a function of γ' evolution dislocation/ γ' interaction as a function of γ' radius
 - Microstructural characterization for the generation of synthetic microstructures
 - Weld
 - HAZ
 - Base metal

4

Presentation Outline

- Modeling and simulation approach
 - Overview of the MOOSE architecture
 - Power law creep incorporation of dislocation climb
 - Dislocation interaction with γ ' particles
 - Particle shearing
 - Dislocation climb bypass
 - Orowan looping
- Experimental Studies supporting modeling
 - Creep tests of weld
 - Microstructural characterization using EBSD
 - $-\gamma$ ' Aging
 - Threshold stress determination

Idaho National Laboratory

Modeling and Simulation Approach – MOOSE Architecture

http://mooseframework.org

•

Physical based Multi-scale Material Model Development

- Atomistic simulations identify critical mechanisms and determine parameters required for mesoscale model development.
- Mesoscale modeling and simulation is used to inform the development of analytical theory for engineering scale.

nanometers First Principles

- Identify critical bulk mechanisms
- Determine bulk properties

100's of nanometers Molecular Dynamics

- Identify interfacial mechanisms
- Determine interfacial properties

microns Mesoscale

- Predict microstructure
 evolution
- Determine impact on properties

millimeters and up Engineering scale

80 yrs

Idaho National Laboratory

Use analytical theory

Transition Temperature Shift (F) 168 160 120

> 80 40

 Predict material performance

Modeling Approach

- Polycrystalline length scale region consisting of base metal, HAZ and fusion region
- FIB, EBSD, SEM Grain size, orientation, misorientation distribution
- Reconstructed or synthetic
 microstructure satisfying the statistics

Diffusional creep:

Vacancy generation/annihilation model

Dislocation creep:

Dislocation density based model ______ considering APB shearing, Orowan loop and climb

Effect of γ ' shape, size, volume fraction on APB shear - Homogenized model from micromechanics simulation

Representative Volume of polycrystalline microstructure

Evolution of γ 'precipitate

Crystal plasticity Model (dislocation density based)

- Crystal plasticity mechanistically represents plastic deformation by representing dislocation slip along slip planes
- Slip contributions are summed across all slip planes

Dislocation motion defined by a flow rule $\dot{\gamma}^s = \tilde{\dot{\gamma}}^s (\tau^s, \tau_0^s)$

Dislocation generation and pile-up accounted for by increasing slip resistance with a hardening law $\boldsymbol{F} = \boldsymbol{F}^{V} \boldsymbol{F}^{e} \boldsymbol{F}^{p}$ Volumetric can account for residual strains Plastic velocity gradient in the intermediate configuration

$$\dot{\boldsymbol{F}}^{p}\boldsymbol{F}^{p-1} = \sum_{\alpha} \dot{\boldsymbol{\gamma}}^{\alpha}_{glide} \boldsymbol{S}^{\alpha}_{0} + \sum_{\alpha} \dot{\boldsymbol{\gamma}}^{\alpha}_{c\,\mathrm{lim}\,b} \boldsymbol{N}^{\alpha}_{0}$$

$$S_0^{\alpha} = s^{\alpha} \otimes m^{\alpha}$$
 $N_0^{\alpha} = s^{\alpha} \otimes s^{\alpha}$

 s^a - Slip direction m^a - normal in reference configuration

Idaho National Laboratory

Glide model

Glide rate in matrix $\dot{\gamma}^{\alpha}_{glide} = \rho^{\alpha}_{M} b v^{\alpha}_{glide}$

 $(\rho_M - Potentially mobile dislocation density)$

Glide velocity:

$$v_{glide}^{\alpha} = \begin{cases} lv \exp\left(-\frac{\Delta F_{glide}}{KT} \left(1 - \left(\frac{\left|\tau^{\alpha}\right| - g_{athermal}^{\alpha}}{g_{thermal}^{\alpha}}\right)^{p}\right)^{q}\right) \operatorname{sgn}(\tau^{\alpha}); \text{ for } |\tau^{\alpha}| > g_{athermal}^{\alpha} \end{cases}$$

Resolved shear stress $\tau^{\alpha} = T^* : S_0^{\alpha}$

 $= \boldsymbol{T}^* : \boldsymbol{S}_0^{lpha}$

Athermal resistance:

$$g^{\alpha}_{athermal} = \sqrt{\left(\tau^{\alpha}_{disloc-disloc}\right)^2}$$

$$\tau^{\alpha}_{disloc-disloc} = q_{\rho}Gb\sqrt{\sum}A^{\alpha\xi}\rho^{\xi}$$

Numerical example

- 75 x 75 x 75 μ m unit cube
- 27 grains randomly oriented
- 3375 elements

800

600

• Uniaxial tension with symmetric boundary condition

0.016

Non-calibrated parameters

Euler Angle (θ)

Stress Evolution

Anisotropic plastic deformation

9

€ 400 -500 -0 0.004 0.008 0.012 Strain

Stress strain

Climb model

Edge component of dislocation will climb

Climb stress

$$\tau^{\alpha} = \boldsymbol{T}^{*} : \boldsymbol{N}_{0}^{\alpha} = \frac{RT}{V_{m}} \ln \left(\frac{c^{*\alpha}}{c} \right)$$

c* - vacancy concentration at dislocation corec - vacancy concentration in surrounding matrix

Equilibrium concentration at dislocation core

k : factor that depends on precipitate size, shape, etc

Climb velocity
$$v_c^{\alpha} = -\frac{2\pi D}{b \log(r_{\rho}/r_c)} \left(c^{*\alpha} - c_0\right)$$

Effect of dislocation density on effective radius $r_{\rho} = \frac{1}{2\sqrt{\sum}}$ Core radius $r_{c} = 4b$ $r_{\rho} = radius$ where $c^{*} \sim c$

Climb rate: $\dot{\gamma}_{c}^{\alpha} = (\rho_{M}^{\alpha} + \rho_{I}^{\alpha})bv_{c}^{\alpha}$

-0.04

0

5000 Time (sec) 10000

Idaho National Laboratory

APB (Shearable) and Looping (Nonshearable)

- APB formation modifies the atomic structure of the ordered γ^{\prime}
- Orowan looping occurs when looping is easier than cutting.

Slip resistance:

$$\tau_{disloc-ppt} = \frac{1}{2b^2 r} \sqrt{\frac{3f\overline{F}}{\pi G\beta}}$$

Shearable: $r < r_c$

$$\overline{F} = 2\beta Gb^2(\frac{r}{r_c})$$

Non-shearable: $r > r_c$

$$\overline{F} = 2\beta Gb^2$$

 r_c :critical radius of precipitate Athermal resistance:

$$g^{\alpha}_{athermal} = \sqrt{\left(\tau^{\alpha}_{disloc-disloc}\right)^2 + \left(\tau^{\alpha}_{disloc-ppt}\right)^2}$$

Dislocation density evolution

Dislocation density evolution

$$\dot{\rho}^{\alpha} = \dot{\rho}_{M}^{\alpha} + \dot{\rho}_{I}^{\alpha}$$

Evolution of mobile dislocation density

$$\dot{\rho}_{M}^{\alpha} = \frac{k_{mul}}{b} \sqrt{\sum_{\beta} \rho_{M}^{\beta}} \left| \dot{\gamma}_{glide}^{\alpha} \right| - \frac{2R_{c}}{b} \rho_{M}^{\alpha} \left| \dot{\gamma}_{glide}^{\alpha} \right| - \frac{1}{b\lambda^{\alpha}} \left| \dot{\gamma}_{glide}^{\alpha} \right| + C_{1} \left| \dot{\gamma}_{c\,\mathrm{lim}\,b}^{\alpha} \right| + C_{2} \left| \dot{\gamma}_{ppt}^{\alpha} \right|$$

Dislocation
multiplication
from Frank-Read
source and loop
expansionAnnihilation of
dislocations
of opposite
signsDislocation
trappingMobilization of
Dislocations

Mean trapping distance

$$\frac{1}{\lambda^{\alpha}} = \beta_{\rho} \sqrt{\rho^{\alpha}} + \beta_{ppt} \sqrt{Nd}$$

i t

i i

Ď

îι

Ve+

V_1-

vat

Ď

↓t

va-

Evolution of immobile dislocation density

$$\dot{\rho}_{I}^{\alpha} = \frac{1}{b\lambda^{\alpha}} \left| \dot{\gamma}_{glide}^{\alpha} \right| - C_{3} \left| \dot{\gamma}_{c\,lim\,b}^{\alpha} \right| - C_{4} \left| \dot{\gamma}_{ppt}^{\alpha} \right|$$

Idaho National Laboratory

Modular model development

Integration at every material point

- Newton-Raphson for stress $T_{n+1}^{i+1} - \tilde{T}_{n+1}^{i+1} \left(F_{n+1}^{p,i+1}, y_{n+1}^{j} \right) = 0$
- Fixed-point iteration for state $y_{n+1}^{j+1} = f\left(T_{n+1}^{i+1}, F_{n+1}^{p,i+1}, y_{n+1}^{j}\right)$

till $|y_{n+1}^{j+1} - y_{n+1}^{j}| < \eta$

Initial calibration of Alloy 617

- 500 x 500 x 500 μm unit cube
- 64 grains randomly oriented
- Uniaxial tension with symmetric boundary condition

Experimental Studies – Creep Testing

- Creep tests will be carried out at or below the aging temperature
 - Short/intermediate term creep tests support modeling and validation of modules
 - All-weld metal gage section
 - Longitudinal
 - Transverse compression creep sample
 - Transverse gage section
 - Creep stresses to yield test duration between 200-2000 hrs (Larson-Miller plot, Special Metals datasheet for Alloy 740H implies 140 - 400 MPa for welds)
 - Long term creep test validate simulation
 - 141 MPa, 750°C, ~9700 hrs (expected)
 - 83 MPa, 800°C, ~9700 hrs (expected)

Specimen ID	Test temperature, °C	Test type	Initial Stress, MPa	Orientation	Expected rupture life, hrs	Start date	Finish date	Rupture life, Hrs
740-Q1-01	700	Rupt	413	CW*	200	8/24/2016	9/21/2016	639
740-Q1-08	700	Rupt	413	CW	500	11/28/2016	12/27/2016	670.8
740-Q1-06	700	Rupt	395	CW	1000	01/09/2017		
	700	Rupt	344	CW	1000			
740-Q1-03	750	Rupt	350	CW	200	9/29/2016	10/07/2016	184
740-Q1-05	750	Rupt	305	CW	500	10/18/2016	11/06/2016	450
	750	Rupt	213	CW	1000			
740-Q1-04	800	Rupt	240	CW	200	10/10/2016	10/15/2016	123.6
740-Q1-02	800	Rupt	200	CW	500	11/08/2016	11/22/2016	326.8
	800	Rupt	138	CW	1000			
	700	Rupt	400	AWM**	500			
	750	Rupt	248	AWM	500			
	800	Rupt	144	AWM	500			

* CW = Cross weld

** AWM = All Weld Metal

Microstructural Characterization

- Optical metallography and EBSD on three orthogonal surfaces
- Includes base metal, HAZ and weld metal
- Grain Morphology •
- Orientation and misorientation statistics
- Supports generation of • synthetic microstructures
- Solidification segregation in the • weld metal
- γ' size & volume fraction -TEM
 - Base metal
 - -HAZ
 - Weld metal

γ' Aging

- γ' growth and compositional homogenization
- Base metal and weld metal (compositional effects?)
- Determine growth constant for γ' for modeling effort:

 $r^3 - r_o^3 = kt$

- Temperatures: 700, 750, 800°C
- Times: 50, 100, 200, 400, 1000, 3000, 6000 and 10,000 hrs
- TEM with image analysis

Threshold Stress Determination

• Threshold stress is determined by primary dislocation bypass mechanism of the γ ' particles

Idaho National Laboratory

Threshold stress determined by stress drop creep tests

Questions

Contact Information

- Thomas Lillo:
 - Thomas.Lillo@inl.gov
 - (208)526-9746
- Wen Jiang:
 - Wen.Jiang@inl.gov
 - (208)526-1586