Robust Metal-Ceramic Coaxial Cable Sensors for Distributed Temperature Monitoring in Fossil Energy Power Systems

UCR Project Number: *DE-FE-0022993* DOE Project Manager: *Jessica Mullen* Project Duration: *07/01/2014 – 06/30/2017*

Principal Investigators: Junhang Dong (PI) and Hai Xiao (CoPI) Student Participants: Adam Trontz and Shixuan Zeng (U. Cincinnati) Baokai Chen and Wenge Zhu (Clemson U.)

Chemical Engineering/CEAS, University of Cincinnati Dept. Electrical Engineering and Computer Science, Clemson University

Outline

- Introduction
- Project objective, tasks and status
 - Concept of proposed MCCC-FPI
 - Technical Challenges
 - Research Objective
 - Tasks/milestones/timeline
- Research accomplishments
 - Materials identification and development
 - Single point MCCC-FPI sensor
 - Multi-point (2~3) MCCC-FPI sensor
 - Long cable (2m) multi-point (10pts) sensor
 - MCCC-FPI for MW frequency ϵ_r measurement
- Conclusion

UNIVERSITY

Cincir

Introduction

- High temperature measurements in advanced fossil fuel power plants:
 - Needs for real-time distributed temperature measurement for
 - Process control
 - Performance enhancement
 - Safety assurance (equipment, environment, and human)
 - Temperature sensors must
 - survive and function in corrosive gases (T ≥1000°C and P >1000 Psi)
 - possess mechanical strength and small size for ease of installation with reliability,
 - have high sensitivity,
 - provide distributed sensing on single string covering large distance/area
 - be of low cost.

Current technologies

- 1) Thermocouples, Pyrometer ... (point measurement;)
- 2) Fiber optic sensors (<800°C ...)

Research Objective

Project Goal:

To develop materials for a new type of low cost, robust, (minimum packaging/protection) metal-ceramic coaxial cable (MCCC) Fabry-Pérot interferometer (FPI) sensor and demonstrate its capability of cascading a series of FPIs in a single MCCC for real-time distributed monitoring of temperature up to 1000°C.

Technical Objectives:

- 1) to identify and develop sensor materials with desired electrical and dielectric properties as well as thermochemical and structural stability,
- 2) to develop the instrumentation for signal processing and algorithm for operating the sensor and distributed sensing systems, and
- 3) to fabricate demonstrate the MCCC-FPI sensor for real-time distributed temperature measurement and evaluate its performance in terms of sensitivity, spatial resolution, stability, and response speed that are important to practical applications.

Sensor Concept: Coaxial Cable Fabry-Pérot Interferometer (CC-FPI)

- CC-FPI sensor operation principle
 - **Device:** RF interferometer (analog to fiber optic interferometer)
 - **Signal:** interference of reflections from reflectors (ε disturbance)
 - **Operating mechanism:** Shift of interferogram by variation of " $d \times \varepsilon_r^{0.5}$ "

CC-FPI Temperature Sensing Mechanism

Concept: Multiple CC-FPI Sensors for **Distributed Temperature Measurement**

- Distributed CC-FPI sensor multiple FPI along a single ceramic coaxial cable
- The reflectors of weak reflections and low insertion loss enable long distance coverage (2nd reflections are negligible)
- Position by extracting and analyzing the spectrum of a specific discrete FPI achieved by a novel joint time-frequency domain measurement technique
- The reflected EM waves detected by a VNA for resolving amplitude and phase of each reflected signal
- Goal: accuracy ±2°C in a range of 350 1000°C and spatial resolution <10 cm

Joint-time-frequency domain interrogation of multi-point FPI in a single cable for distributed sensing with high spatial resolution

Technical Challenges

- Unavailability of MCCC
- Materials for the MCCC
 - Conductors stability and properties
 - Insulator and reflector stability and properties
- Understandings of parametric effects
 - Dimensions of reflector
 - Inter-reflector length, d
 - Insulator and reflector ε_r
 - Operating frequency range ...

Proposed Research, Tasks, and Status

Task/	Project Duration – Start: 07/01/2014; End: 06/30/2017 Pla						Planned							
Sub- task#	Project milestone description		Project Year 1 (7/1/14-6/30/15)				Project Year 2 (7/1/15-6/30/16)				Project Year 3 (7/1/16-6/30/17)			end date & status
		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	
1.0	1. Management Plan and team building													7/31/14
2.1	1. Design the MCCC-FPI sensor. 2. Identified materials for MCC <u>C-FPI to</u>													12/31/14
2.2	withstand up to 1000°C in relevant gases													6/30/15
3.1	1. Fabricated the single-point MCCC- FPI sensor and demonstrated single-				٠	•	•							12/31/15
3.2	point measurement up to 500°C with accuracy of ±2°C (GO/NO-GO) 2. Designed multi-point MCCC-FPI sensor and established instrument and software for distributed sensing (Task 4.1)											Com	oletec	6/30/15
4.1	1. Design cascaded MCCC-FPI sensors and develop instrumentation											Comp	oletec	12/31/16
4.2	and algorithms for distributed sensing 2. Fabrication of the multiple-point MCCC-FPI sensor (2 -3 FPI)								•					12/31/16
5.0	 Fabricated Multipoint FPIs (16 Pts) in ~2m-long MCCC. Demonstrated 16 FPIs in ~2m-long MCCC for distributed temperature measurement up to 1000°C with spatial resolution <10cm. 											• Oŋ-G	oiŋg	6/30/17 6/30/17
	9 Cincinna							nati						

1. Materials selection and development for MCCC

Candidates of Materials for MCCC

<u>Conductor</u>	Composition	CTE (10 ⁻⁶ m/m °C)	Tm (°C)	Elec. Resistivity
S.S. (316L)	Fe w/ 16-18%Cr, 10- 14%Ni, 2%Mo, 0.75%Si	19.9	1400	690 nΩ·m
Titanium	>99.2% Ti	8.55	1670	420 nΩ·m
<u>Dielectric</u>	Composition	CTE (10 ⁻⁶ m/m °C)	Max Op.	Dielectric Constant
<u>Material</u>			Temp (°C)	@ 1 MHz
Al ₂ O ₃	99.5% Al ₂ O ₃	8.1-8.4	1750	9.8
Mullite	59% Al ₂ O ₃ 36%SiO ₂ 3%K ₂ O	5.9	1500	5.8
ZTA	Zr-Al ₂ O ₃	8.1	1650	10.6
Sapphire	Al ₂ O ₃	5.4	2000	9.3 – 11.5
Macor®	SiO ₂ -ceramic	9.4	1000	6.03
Fused Quartz	SiO ₂	0.6	1000	3.8
Air	$(N_2 + O_2)$	Compressible	>2000	~1.0

MCCC Structural and Mechanical Stability

• Stainless steel (tube and wire) and dense α -alumina tubes have been selected as the basic materials for MCCC construction

MCCC Structural, Chemical, and Thermal Stability

• Stainless steel (tube and wire) and α -alumina tubes combination exhibited the best structural, chemical, and thermal stability

2. Fabrication and evaluation of singlepoint MCCC-FPI

MCCC-FPI Sensor Design

Type **a**: Gap/Whole disc reflector with ceramic insulation

Type **b**: ceramic insulation with groove reflectors

MCCC-FPI: Gap Size Determination

- A reflection of appropriate intensity is desired especially for development of singlecable multiplexed distributed sensors
- Air gap width of 1 4 mm appears to be suitable for sensor applications

UNIVERSITY OF

Cincinnati

Measured reflection intensity vs gap size

Model-predicted (left) and experimentally measured (right) reflection intensity as a function of reflectors' width.

16

Single-Point MCCC-FPI Structures

UNIVERSITY OF

Cincinnati

- MCCC-FPIa: *d* determined by expansion/contraction of metal wire
- MCCC-FPIb: d determined by expansion/contraction of Alumina tube

17

Sensor Operation Apparatus

Interferogram Evaluation as a Function of Temperature

Correlation between Frequency and Temperature

20

UNIVERSITY OF

Cincinnati

Sensor Response Speed

Frequency shift (Δf) for MCCC-FPIa as a function of time in response to the programmed temperature change

Temperature-Dependence of ∆f and Sensitivity

22

Experimentally measured frequency shift Δf as a function of temperature for both MCCC-FPI with linear correlations

Resonant freq. used @ RT: FPIa – 3.4 GHz; FPIb – 7.1 GHz

Temperature-dependences of Δf :

Excellent linear dependence – FPIa (-0.186 MHz/°C) FPIb (-0.351 MHz/°C)

Sensitivity: FPIb higher than FPIa

Structure stability: FPIb better than FPIa

UNIVERSITY OF Cincinnati

3. Design and fabrication of 2- or 3-point MCCC-FPI

Joint-time-frequency domain operation.

Evolution of the relationship between resonant frequency and temperature during heating-cooling cycles. Pair 2 placed in center of tubular furnace.

26

Cincinnati

Multi-Point MCCC-FPI

Evolution of the relationship between resonant frequency and temperature during heating-cooling cycles.

Evolution of the relationship between resonant frequency and temperature during heating-cooling cycles.

Response of MCCC-FPI

Evolution of the relationship between resonant frequency and temperature during heating-cooling cycles.

30

UNIVERSITY OF

Cincinnati

4. Evaluation of multi-point MCCC-FPI (10-16 pts in ~2m-long MCCC)

Research still ongoing

Summary

- Research progress of this project is on schedule
- Research accomplishments
 - Identified and developed metal ceramic materials for construction of MCCC-FPI sensors with good stability in harsh environments
 - Fabricated and demonstrate single point MCCC-FPI sensor for temperature measurement up to 1000°C
 - Fabricated and demonstrated MCCC-FPI sensor with 2 3 FPIs (2 3 sensing points)
 - Long cable (2m) multi-point (10pts) sensor under development

5. MCCC-FPI for dielectric constant measurements for sensor material development

Sensor Concept

Sensing Mechanism

35

$$U1 = \Gamma(f)e^{-\alpha z}e^{-j2\pi f\frac{2d_0\sqrt{\varepsilon_{r,1}}}{c}}$$
$$U2 = -\Gamma(f)e^{-\alpha z}e^{-j2\pi f\frac{2d_0\sqrt{\varepsilon_{r,1}}+2d\sqrt{\varepsilon_r}}{c}}$$
$$U = 2j \cdot \Gamma(f)e^{-\alpha z}e^{-j2\pi f\frac{2d_0\sqrt{\varepsilon_{r,1}}+d\sqrt{\varepsilon_r}}{c}}\sin(2\pi f\frac{d\sqrt{\varepsilon_r}}{c})$$

Sensor Construction

Photograph showing the structure of an actual MCCC-FPI microwave sensor and section

Determination of "d" Value

- The inter-reflector distance "d" is precisely determined from interferogram with dry air or vacuum ($\epsilon_r \sim 1.0$)
- Temperature effect on Δf at 20 50 C is negligible compared to effect of ϵ_r changes

37

The time domain spectrum of the air-filled MCCC-FPI.

The 2nd resonant peak frequency (f_2) of dry air filled MCCC-FPI and the $\Delta \varepsilon_r$ as functions of temperature.

UNIVERSITY OF

Cincinnati

Fluid Dielectric Constant Measurement

The frequency domain interferometric reflection spectra of the MCCC-FPI when filled with sesame oil, olive oil, corn oil, and Mobil-1 oil, respectively.

Dielectric constants of the oils measured at room temperature (24°C) by the MCCC-FPI in comparison with literature values

Oil			Reference [11-16]							
0 m	<i>f</i> ₂ /GHz	Er	<i>f</i> ₃/GHz	E _r	<i>f</i> ₄ /GHz	E _r	<i>f₅</i> /GHz	E _r	ƒ∕GHz	E _r
Sesame	1.75	3.09	2.68	2.97	3.57	2.97	4.55	2.86	0.001~9	3.11~2.42
Olive	1.75	3.09	2.70	2.93	3.59	2.94	4.56	2.87	0.31~0.91	3.11~2.46
Corn	1.74	3.12	2.68	2.96	3.65	2.85	4.61	2.78	2.8~3.0	2.66~2.61
Mobil-1	2.02	2.33	3.08	2.24	4.12	2.23	NA	NA	NA	2.1~2.8

Online Monitoring of Fluid Dielectric Constant

Mixing Rule for ε_r of Mixtures

Comparison between experimental values and model predictions of $\epsilon_{r,mix}$ for sesame-water binary mixture

-	Maxwell-Garnett:	$\frac{1}{\varepsilon_{r,mix} + 2\varepsilon_{r,s}} = \frac{1}{\varepsilon_{r,d} + 2\varepsilon_{r,s}} \varphi_d$				
5	Bruggeman:	$\frac{\varepsilon_{r,mix} - \varepsilon_{r,d}}{\varepsilon_{r,s} - \varepsilon_{r,d}} \left(\frac{\varepsilon_{r,s}}{\varepsilon_{r,mix}}\right)^{1/3} = 1 - \varphi_d$				
I	Bottcher:	$\frac{\varepsilon_{r,mix} - \varepsilon_{r,s}}{3\varepsilon_{r,mix}} = \frac{\varepsilon_{r,d} - \varepsilon_{r,s}}{\varepsilon_{r,d} + 2\varepsilon_{r,mix}} \varphi_d$				
ω	Proposed mixing rule based on thermodynamic theory $\ln \varepsilon_{r,mix} = \sum_{i} x_i \ln \varepsilon_{r,i}$					

Ermin - Ere

Erd - Ers

UNIVERSITY OF

Cincinnati

• The new mixing rule dramatically improved prediction at relatively low water content;

40

• The Bottcher's model performs well for high water content.

Conclusions

- Developed the MCCC-FPI sensor and establish its operating protocol and data processing models for measuring fluid dielectric constant in microwave frequency range;
- Developed new theoretical mixing rule for improved correlation and prediction of fluid mixture dielectric constant based on the knowledge of pure fluid dielectric properties; and
- The application of this sensor for measuring ε_r for packed ceramic powders is to be tested.

Thank You

MCCC-FPI: Reflector width as a function of intensity

MCCC-FPI Materials: Reflectors

Single-Point MCCC FPI - Ceramic Disc-Alumina Dielectric

Single-Point MCCC FPI -Ceramic Disc-Alumina Dielectric

