

High-Temperature Sapphire Pressure Sensors For Harsh Environments

Haocheng Zhou¹, Austin Vera¹, Peter Woerner², Jakob Consoliver², <u>Alexandra Garraud¹</u>, David Mills¹, <u>William Oates²</u>, Mark Sheplak¹

¹Interdisciplinary Microsystems Group, University of Florida ²Florida State University

3/21/2017

DE-FE0012370 - 01/01/2014 – 08/31/2017 2017 NETL Crosscutting Research Review Meeting

Project Information

- Focus: Development of novel machining methods for the fabrication of harsh environment pressure sensors
- Award information
 - Project title: "High-temperature sapphire pressure sensors for harsh environments"
 - Award #: DE-FE0012370
 - Program manager: Sydni Credle
 - Duration: 3 years (1 year NCE) started Jan 2014
- Project team
 - UF (Project lead)
 - FSU

Technical Objectives

- 1. Novel sapphire fabrication processes
 - Subtractive machining: ultrashort pulse laser (modeling + experimental)
 - Additive manufacturing: spark plasma sintering
- 2. Characterize and mitigate thermo-mechanical damage
 - Statistical modeling of laser pulse-material interactions
- 3. Fabricate, package, calibrate, and demonstrate sapphire optical pressure sensor
 - Application for harsh environments (> 1000 °C and > 1000 psi)

Outline

- Introduction
- Thermal Damage Modeling
- Micro and Nano-indentation Mechanics
- Sensor Fabrication
- Acoustic Characterization
- Conclusion/Future work

Motivation

- Next generation advanced energy systems will require harsh environment instrumentation:
 - Process control/closed loop feedback
 - Increase efficiency, reduce emissions & cost
- Sensor operational requirements
 - Temperature: >1000 °C and dynamic pressure: up to 1000 psi
 - Atmosphere: corrosive and/or erosive
- Conventional pressure sensor instrumentation limited to ~500 °C
- Current temperature mitigation techniques:
 - Stand-off tubes, water cooling

Transduction Mechanism Selection

	Capacitive	Piezoresistive	Optic
Thermal drift	✓	X	~
DC measurement	\checkmark		✓
EMI insensitivity	X	X	\checkmark
Harsh environment capability (>500 °C)	X	X	\checkmark
Packaging simplicity	\checkmark	\checkmark	Х

 Optical transduction (intensity modulation – optical lever) is selected given our constraints

Pro	Con	
Simple/robust fabrication	Lower sensitivity	
Incoherent source		
Single or multimode fibers		

Material Selection

	Silicon Carbide	Diamond	Sapphire
Transparency	✓	Х	~
Bulk substrate availability	\checkmark	Χ	\checkmark
Optical fiber availability	X	Х	\checkmark
Minimal film stress	Х	X	\checkmark
Well-established	V	v	v
μ-machining processes	^	~	^

- Benefits of sapphire
 - High melting point (2053 °C)
 - Resistance to chemical corrosion
 - Excellent hardness
 - **Large transmission window (200 nm 5 \mum)**
 - Multimode optical fibers available

Proof-of-Concept Device (UF)

- Diaphragm
 - 8 mm diameter, 50 μm thick
 - Platinum reflective surface
- Configuration
 - Single send/receiver fiber
 - Sapphire/silica fiber connection
 - Reference photodiode

D. Mills et al, Proc. SPIE, vol. 9113, Apr 2014

Achievements

- Quantified structure-properties relations in laser machined sapphire
 - Enhanced fracture resistance and nominal strength increase
 - Dislocation formation and amorphous material structure
- Model formulation
 - Continuum light-matter predictions and uncertainty quantification of sapphire laser ablation
 - Finite element estimation of single crystal nanoindentation in sapphire
- Laser micromachining
 - Model prediction matches experimental data
 - Higher fluence and number of cut passes reduces sidewall angle
 - Increasing number of passes improves uniformity

11

Laser Ablation Modeling and Uncertainty Analysis

Laser Ablation Modeling

- Quantified key material physics associated with pulsed picosecond laser ablation of sapphire
- Maxwell equations coupled to time-dependent internal state electronic structure variable
 - Gaussian laser pulse excitation evaluated over a range of intensities
 - Electromagnetics coupled to rate dependent electronic material excitation

$$L = L_F + L_I + L_M$$
$$\Pi_D = -\sum_{i=1}^{n} \frac{1}{2} \beta^{\alpha} \dot{y}_i^{\alpha} \dot{y}_i^{\alpha}$$

Lagrangian of free space (L_F), electromagnetic interaction energy (L_I), and material energy (L_M) Entropy generation function, β^{α} - inverse mobility, \dot{y}_{i}^{α} - rate of change of electronic material structure

Minimization of Lagrangian and entropy generation leads to balance equations

Numerical Implementation

- Balance equation for electronic structure
 - Phase field type equation → sharp interface limit
 - Tracks irreversible laser ablation on sapphire material surface
- Finite difference formulation
 - Error convergence of spatial and time discretization conducted
- Interaction energy within Lagrangian
 - Two light-matter constitutive models formulated
 - Robust model estimates of excited state model parameters
 - Quantified correlations between electron density of sapphire and complex permittivity governing light absorption

Uncertainty Quantification (UQ)

- Bayesian UQ used to validate the model in light of data
 - Markov Chain Monte Carlo (MCMC) numerically implemented using delayed rejection adaptive Metropolis (DRAM)
- ID model approximation due to computational limits
 - Model sampled 3×10⁴ times to achieve converged posterior densities

Parameter Correlation

Three Dimensional Extrapolation

- One dimensional model calibration extrapolated to 3D
 - Reasonable correlation with data
 - Electronic relaxation: τ~4 fs
- Sensitivity and error analysis
 - Parameter sensitivity critical for 3D predictions
 - Average experimental depth of ablation: 13.8 µm
 - Average simulated depth of ablation: 11.3 µm

Experimental Ablation Surface

Simulation of Ablation

17

Micro and Nanoindentation Mechanics

Laser Ablated Fracture Resistance

- Enhanced toughness in laser machined sapphire
 - No observable cracks from microindentation
- Prior nanoindentations (UF group) illustrate differences in force-displacement curves
- Dislocations induced by laser ablation process
 - Confirmed from transmission electron microscopy (FSU group)

12um

Model Development

19

- Solid mechanics of sapphire coupled to single crystal dislocation slip system model
- □ Kinematics broken into elastic (H^e) and plastic (H^p) components

$$\nabla \mathbf{u} = \mathbf{H}^e + \mathbf{H}^p$$

□ Plastic strain dependent upon a set of single crystal slip systems (α)

$$\mathbf{H}^{p} = \sum_{\alpha} \gamma^{\alpha} \mathbf{m}^{\alpha} \mathbf{s}^{\alpha}$$

- □ Time evolution equation for slip magnitude $\dot{\gamma}^{\alpha} = A\mathbf{m}^{\alpha} \cdot \mathbf{\sigma} \cdot \mathbf{s}^{\alpha}$
- Finite element model implemented in FEniCS
 - Penalty method introduced to accommodate nanoidentation contact mechanics

Results

Displacement Field

Slip magnitude

Sensor Fabrication – Process Flow

 \rightarrow Issue 1:

In-house laser machining tool was down for most of the year → Solution 1: Externally contracted the laser machining of cavity substrate

→ Issue 2:
Thermocompression bonding tool is down
→ Solution 2:
Use of ceramic epoxy for bonding the two substrates together

7. Packaging of the sensor

Sensor Fabrication – Mechanical Sensitivity Optimization

- 23
- □ Aim: optimize diaphragm diameter for best acousto-mechanical sensitivity
- Using lumped element modeling:

Sensor Fabrication – Mechanical Sensitivity Optimization

- □ Aim: optimize diaphragm diameter for best acousto-mechanical sensitivity
- Using lumped element modeling
- □ Assuming 200 kPa_{max}, and a 38 ± 22 µm thick substrate, f_{mincon} solutions:

Thickness (µm)	Diameter (mm)	Flat-band Sensitivity (nm/Pa)	Maximum deflection (µm)	Resonant Frequency (kHz)
60	5.4	0.12	24.5	31.3
50	4.4	0.093	18.7	38.1
38	3.4	0.076	15.1	46.0
16	1.4	0.029	5.8	90.7

Resulting diameter = 5 mm

Sensor Fabrication – Optical Sensitivity Optimization

- 25
- Aim: Find the distance between end of fiber and reflective Pt layer for linear optical response and optimal sensitivity

Sensor Fabrication – Membrane/Cavity Substrates

- 26
- Laser machining of trenches in both substrates for improved adhesion
- Next step: using alumina ceramic, bond the two wafers together

3. Lasermachining of trenches in both substrates

Membrane Substrate

Sensor Fabrication – Optic Fiber Structure

- Sapphire optic fiber was mounted on:
 - Stepped ferule
 - FC connector
 - Brass tubing for rigidity
 - In the future, to be replaced by alumina

Acoustic Characterization

High Temperature Testing Facility

- Plane Wave Tube (PWT) for acoustic characterization
 - Speaker generates acoustic pressure waves
 - Propagate as plane acoustic waves through the tube furnace
 - Option: tube furnace ON \rightarrow high temperature capability
 - Pressure sensor characterized in situ

Step 1: Characterization of Temperature

- □ Aim: acoustic characterization up to 1200 °C
- Measurement of temperature along the PWT
- Added insulation to prevent thermal leak

Step 1: Characterization of Temperature

- □ Aim: acoustic characterization up to 1200 °C
- Measurement of temperature along the PWT
- Added insulation to prevent thermal leak

Step 1: Characterization of Temperature

- □ Aim: acoustic characterization up to 1200 °C
- Measurement of temperature at the future sensor location

Step 2: Acoustic Characterization

- Aim: Acoustic characterization at high temperatures
- □ Issue: the acoustic response varies with temperature
- Solution: use of a remote reference microphone with probe tip

Conclusions – Future work

34

Conclusions

Laser Ablation Modeling

Successfully predicted ps laser ablation in 1D and extrapolated 3D to simulate milling

Developed a 2D model of elastic+slip mechanics for nano-indentation in sapphire

Sensor Fabrication

- Determined the separation between fiber and reflective layer for optimal optical sensitivity
- Designed cavity and membrane substrates for optimal acousto-mechanical sensitivity
- Initiated sensor fabrication

Acoustic Characterization

- Optimized high temperature plane wave tube setup to reach 1100 °C at sensor location
- Designed mounting support to hold all the equipment necessary for characterization
 - Thermocouple, remote reference microphone with probe tip, sensor

Future Work

Laser Ablation Modeling

- Inferring material property changes in laser machined sapphire via nanoindentation and FEA
- Developing UQ tools and planning x-ray measurements to understand laser induced fracture properties

Sensor Fabrication

- Finish fabrication, package and demonstrate proof of concept at room temperature
- Acoustic Characterization
 - Calibrate PWT acoustic response at high temperatures
 - Demonstrate sensor capabilities at elevated temperatures

High-Temperature Sapphire Pressure Sensors For Harsh Environments

Haocheng Zhou¹, Austin Vera¹, Peter Woerner², Jakob Consoliver², <u>Alexandra Garraud¹</u>, David Mills¹, <u>William Oates²</u>, Mark Sheplak¹

¹Interdisciplinary Microsystems Group, University of Florida ²Florida State University

3/21/2017

DE-FE0012370 2017 NETL Crosscutting Research Review Meeting