Characterization of CO₂ Storage in Residual Oil Zones

Project Number: LANL FE-715-16-FY17

Rajesh Pawar Los Alamos National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 1-3, 2017

Presentation Outline

- Introduction
- Project Objective
- Technical Status
- Accomplishments to Date
- Lessons Learned
- Synergy Opportunities
- Project Summary

CO₂ Storage in Residual Oil Zones

- Residual Oil Zones (ROZs) are defined as those zones where oil is swept over geologic time period (natural flush) and exists at residual saturation
 - Brownfield: ROZ underlies a Main Pay Zone (MPZ)
 - ➢ Greenfield: no Main Pay Zone above ROZ
- ROZs are being increasingly exploited using CO₂-EOR:
 - Multiple on-going commercial field operations in Permian Basin
- Greenfield ROZs can be potentially explored for CO₂ storage with a side benefit of incremental oil recovery

Residual Oil Zone Fairway Mapping with Superimposed Major Permian and Pennsylvanian Oilfields and Showing the First Pure ROZ Greenfield ROZ CO₂Project

CO₂ Storage in Residual Oil Zones

- Preliminary studies estimate potentially high CO₂ storage capacity in ROZs
 - Primarily focused on the Permian Basin ROZs
 - Preliminary evidence indicate ROZs' presence in other major basins including, Williston, Big Horn, etc.
- Characterization data for ROZs are extremely limited
 - Mainly Permian Basin based
 - Not much information in public domain
 - Large uncertainties
- Further refinement of estimates with focused studies is needed
 - Improving understanding of CO₂ storage processes
 - Development of consistent methodology

Project Objective

- Characterize CO₂ storage potential in ROZs:
 - Primarily Greenfield
 - > Oil recovery potential
 - ▹ Long-term CO₂ fate
 - Assess key uncertainties and data needs
 - Develop general relationships to assess CO₂ storage and oil recovery potential applicable to wide range of geologic characteristics

TECHNICAL STATUS

Approach

- Literature search on data:
 - > Limited public domain information
 - Main source: UT-PB, Melzer Consulting, ARI report on Goldsmith-Landreth San Andres Unit (GLSAU) in the Permian Basin: CO₂ flooding in ROZ and MPZ since 2010
- Our approach is based on numerical simulations:
 - > Numerical model for GLSAU based on public domain data
 - > Focused only on Greenfield portion (ignored MPZ)
 - Simulations of CO₂ injection and oil production: Eclipse, compositional simulations with aqueous CO₂ dissolution
 - > Multiple scenarios:
 - Varied injection rate, well patterns, injection patterns, reservoir permeability, residual oil saturation, etc.

CO₂ storage capacity

Base Case:

- Five spot pattern: 16 injectors & 9 producers, 40 acre well spacing
- 10 years continuous CO₂ injection with simultaneous production followed by 5 years of no injection and production: constant rate injection with BHP control (4000 psi)

Oil Recovery Potential

Oil recovery and CO₂ retention efficiency vary non-linearly with amount injected

Reservoir CO₂ Distribution

• Long-term CO₂ inter-phase distribution is a function of CO₂ injection amount

Significant fraction of reservoir CO₂ resides in hydrocarbon phase

Effect of Well Spacing

Compare performance among three scenarios:

- 1. Multiple five-spot patterns (16 Injectors, 9 Producers)
- 2. Multiple five-spot patterns (9 Injectors, 4 Producers)
- 3. Single five-spot pattern (4 Injectors, 1 Producer)

Effect of Well Spacing

- Less number of wells actually results in higher CO₂ retention and oil recovery: better reservoir sweep

Continuous injection versus WAG

	Cont. CO ₂ (BHP)	Cont. CO ₂ (Rate)	WAG 3m-3m	WAG 1m-5m	WAG 2m-4m
Cumulative CO ₂ injected (MM Tons)	294	225	133	248	194
Cumulative CO ₂ retained (MM Tons)	58.8	44.2	43.5	55.4	50.4
Fraction of CO ₂ retained	20.0%	19.7%	32.8%	22.3%	26.0%
Cumulative Oil Production (MM STB)	11.9	10.6	10.1	11.3	10.8

- Continuous CO₂: BHP control results in much higher cumulative CO₂ retained and 1.3 MM STB more oil produced.
- WAG injection has lower cumulative CO₂ retention but higher fractional retention and higher CO₂ retention efficiency.

Accomplishments to Date

- Successfully developed a numerical model for a Greenfield ROZ site
 - » Model based on public domain data for an operational field with CO₂-EOR in ROZ
- Performed multiple compositional simulations to estimate CO₂ storage and associated oil recovery potential in the Residual Oil Zone
 - Gained key insights in variability of CO₂ storage capacity and oil recovery due to variability in operational parameters and geologic parameters

Lessons Learned

- Research gaps/challenges:
 - > Significant lack of appropriate characterization data
 - Large uncertainties

Synergy Opportunities

- NETL modeling efforts on ROZ storage potential: compare modeling approaches, share results, share lessons learned
- UT-BEG experimental efforts: characterization data
- NETL Carbon Storage Atlas project: approaches for estimating storage capacity

Project Summary

- Key Findings:
 - > CO_2 storage in ROZ does not scale with injected CO_2 amount
 - > CO_2 storage fraction decreases non-linearly with increasing CO_2 injection
 - > Oil recovery and CO₂ retention efficiency vary non-linearly with CO₂ injection
 - > Majority of CO₂ resides in hydro-carbon phase
 - Larger well spacing (than traditional 40 acre) improves CO₂ retention and oil recovery: reduced potential for leakage
 - Variability in reservoir vertical permeability and residual oil saturation does not have any significant effect of CO₂ storage capacity or oil recovery
- Next Steps:
 - Extend model application to ROZs from other basins in US
 - Develop relationships to estimate CO₂ storage capacity and oil recovery potential in ROZ applicable over wide range of geologic conditions

Appendix

These slides will not be discussed during the presentation, but are mandatory.

Benefit to the Program

- Program goals being addressed:
 - Support industry's ability to predict CO2 storage capacity in geologic formations with $\pm 30\%$.
- Project benefit:
 - This project is focused on developing the science basis to characterize CO₂ storage potential in Residual Oil Zones (ROZs). The objective is to help develop a methodology to estimate CO₂ storage capacity, potential oil recovery and long-term fate of CO₂ that is applicable to a wide range of geologic and operational conditions. This will help CO₂ storage program goal of supporting industry's ability to predict CO₂ storage capacity.

Project Overview Goals and Objectives

- Characterize CO₂ storage potential:
 - > Primarily, Greenfield ROZ
 - > Oil recovery potential
 - ▹ Long-term CO₂ fate
 - Assess key uncertainties and data needs
 - Develop general relationships to assess CO₂ storage and oil recovery potential applicable to wide range of geologic characteristics

Organization Chart

- Rajesh Pawar, PI
- Bailian Chen, Post-doc
- George Guthrie, LANL Program Manager

Gantt Chart

	0-6 months	6-12 months
Task 3.1 Project		
Management &		
Planning		
Task 3.2 Refine		
estimates of ROZ CO ₂	4	
utilization potential for		
US		
Task 3.3 Develop		
reduced order models		
for ROZ CO ₂ storage		
potential assessment		

Bibliography

- List peer reviewed publications generated from the project per the format of the examples below.
- Journal, one author:
 - Gaus, I., 2010, Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks: International Journal of Greenhouse Gas Control, v. 4, p. 73-89, available at: XXXXXXX.com.
- Journal, multiple authors:
 - MacQuarrie, K., and Mayer, K.U., 2005, Reactive transport modeling in fractured rock: A stateof-the-science review. Earth Science Reviews, v. 72, p. 189-227, available at: XXXXXX.com.
- <u>Publication</u>:
 - Bethke, C.M., 1996, Geochemical reaction modeling, concepts and applications: New York, Oxford University Press, 397 p.