Development of Nanoparticle-Stabilized Foams to Improve Performance of Waterless Hydraulic Fracturing

Project Number DE-FE0013723

Maša Prodanović and Keith Johnston The University of Texas at Austin

U.S. Department of Energy

National Energy Technology Laboratory

Mastering the Subsurface Through Technology, Innovation and Collaboration:

Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 16-18, 2016

Goal: Establish Novel CO₂/water and N₂/water Ultra Dry Foams Frac Fluids to Reduce Water Consumption and Improve Performance

Background and Motivation

- Drivers
 - Hydraulic fracturing essential technology for current, future hydrocarbon production
 - Unconventional oil and gas reservoir development requires
 - Dense well spacing
 - Many frac stages per well
- Standard base fluid for hydraulic fracturing is fresh water
 - Water usage and disposal (mini earthquakes)
 - Water and additives that reduce leak-off form gel on fracture face impede oil and gas production

Key finding 1: ultra dry foams with NPs and surfactant

- Very low water ("ultra dry") supercritical CO₂-in-water foams:
 - 90% 98% CO₂ by volume
 - with high viscosity on the order of 100 cP to carry proppant
 - long lifetime of hours
- Stabilized with mixtures of:
 - silica nanoparticles
 - lauramidopropyl betaine (LAPB) surfactant and
 - partially hydrolyzed polyacrylamide (HPAM) polymer
- Foams at typical conditions of hydraulic fracturing of 2 % KCl brine and 50 °C could potentially reduce water consumption for fracturing by 50 fold
- High continuous phase and surface viscosities produced as a result of interactions of nanoparticles with surfactant and polymer

Apparatus for Foam Viscosity Measurements

Key finding #2: Ultra Dry Foams with Viscoelastic Surfactant Only

- Simplified, ultra dry foams formed with viscoelastic surfactants and no polymer or NPs
 - high viscosity (100 cP at 100 s⁻¹),
 - high quality (> 0.9) C/W foams
 - with long lifetime (>3 hrs)
 - high temperature to 120 C, salinity, pressure
- With sodium lauryl ethoxylated sulfate (SLES) –cationic surfactant mixture
 - "Ultra dry carbon dioxide-in-water foams with viscoelastic aqueous phases", Zheng Xue, Andrew J. Worthen, Ali Qajar, Isiah Robert, Chun Huh, Maša Prodanović, Keith P. Johnston, Langmuir, 2016
- With single zwitterionic amidopropylcarbobetaines
 - $R-ONHC_3H_6N(CH_3)_2CH_2CO_2$, where R is varied from C_{12-14} (coco) to C_{18} (oleyl) to C_{22} (erucyl)
 - S. Alzobaidi, C. Da, V. Tran, M. Prodanović, and K. P. Johnston, "High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants," Journal of Colloid and Interface Science, vol. 488, pp. 79–91, Feb. 2017.

Entanglement of Wormlike Micelles Imparts Viscoelasticity

$$V = -\frac{dh_f}{dt} = \frac{2h^2}{3\mu_e R_f^2} (P_c - \Pi(h))$$

Very dry foams, high ϕ gives high P_c Rapid lamellae drainage

 $P_c = \gamma / R_f (1 - \phi)^{0.5}$

Catanionic micelles: 2:1 $C_{13}COO^{-}$: $C_{16}(CH_3)_3NH_4^+CI$

Jamming: slow drainage maintains thick lamellae

Fameau et al., Ang. Chem. (11)

Objective: Design High Internal Phase CO₂-in-Water Foams with a Viscoelastic Aqueous Phase

- Stabilize high viscosity (>100 cP at 200 s⁻¹), high quality (> 0.9) C/W foams with long lifetime (>12 hrs)
- Characterize rheology of aq. phases of zwitterionic amidopropylcarboxybetaine surfactants with long tails
 - Viscoelastic aq. phase composed of wormlike micelles (high packing fraction)
 - Single environmentally responsible surfactant at low concentration
 - Efficacy over a wide range in salinity (up to 22% TDS), pH and T up to 120°C
- Understand stability of C/W foams with only 1 wt.% surfactant
 - Role of slow lamellar drainage even at high qualities where cap. P is high
 - Thicker lamellae: slow down Ostwald ripening (microscopy)
 - Contrast three different tail lengths for fixed amidopropyl betaine headgroup (C12-14, C18, C22)

Adjusting Packing Fraction for Viscoelastic Wormlike Micelle Aqueous Phases

- Small headgroup area even with alignment of charges in headgroup: still less electrostatic repulsion than for ionic surfactants
- C₁₈ and C₂₂ tails to raise numerator of p

Foam Generated with 1% w/v C18Amidopropylbetaine Surfactant at a Shear Rate of 200 s-1 (3000 psig)

- Aq. phase visc. raises C/W foam visc.
- Stable foams maintained up to 120°C even with very high foam quality:
 - reduced lamellae drainage with viscoelastic wormlike micelles
 - thicker lamellae resist Ostwald ripening and coalescence

Foam Texture Micrographs of 1% w/v C₁₂₋₁₄, C₁₈ and C₂₂ Surfactant Over Time

Limited gas diffusion, strong wormlike micelles entanglement (EAPB).

11

Slowest Ostwald Ripening for C22 tail given most entangled wormlike micelles and most viscous aq phase

- Long term stability is dominated by Ostwald ripening (const. polydisp.)
- Ω_3 decreased by a factor of ~30 upon formation of wormlike micelles
- Thicker lamellae will slow down Ostwald ipening

High Pressure Foam Suspends Sand

Right after foam generated

One day later

C. Da, Z. Xue, A. J. Worthen, A. Qajar, C. Huh, M. Prodanovic, and K. P. Johnston, "Viscosity and Stability of Dry CO2 Foams for Improved Oil Recovery," in SPE Improved Oil Recovery Conference Proceedings, Tulsa, OK, 2016, p. Paper number 179690.

- Presence of the proppant grains does not affect the foam stability
- The dry foam has enough strength and stability to carry the proppant in potential fracturing applications

Conclusions: Finding 2

- Single zwitterionic surfactants with C₁₈ or C₂₂ tails formed wormlike micelles at on 1 wt. % over a wide range of salinity, pH and T.
- High app. foam viscosity >100 cP at 0.9-0.98 quality (ultra dry), 200 s⁻¹ sufficient to carry proppant
 - high aq. phase viscosity
 - small bubble size of ~30 µm at 90°C
- Long term stability of hours to days
 - Reduced Ostwald ripening rate by a factor of 30 upon formation of wormlike micelles
 - Slow drainage rates with viscoelastic aqueous phases
 - Thicker lamellae and slower CO₂ diffusion
- Potential for improved oil and gas recovery as water often inhibits flow through porous media

Viscous C/W foam with salt tolerant sulfonated ligands and zwitterionic surfactant up to 80 C

With Robert Enick University of Pittsburgh and Bob Perry, GE Global Res.

C/O Emulsions without gelling oil with PDMS:HC surf. Emulsion generated at 400/s shear rate in 22D bead pack

Accomplishments to Date

- Successful creation and characterization of viscous, ultra dry CO₂ and N₂-in-water foams with surfactants or nanoparticles and surfactants
 - Stable at high temperature (120 C), salinity and pressure
 - Can carry proppant with significant reduction in water use down to 2% water!
 - Environmentally friendly surfactants
- Mechanistic understanding of foam stabilization used to relate foam rheology and stability to foam texture and interfacial properties
 - Used to minimize amphiphile and water requirements
 - Contrast nanoparticle and surfactant and nanoparticle/surfactant stabilized energized foams
- Foam behavior in fractures and leak-off: numerical assessment
 - Larger viscosity foams create wider fracture with shorter half-length
 - Less leak-off, less clean-up
 - "Modeling fracture propagation and cleanup for dry nanoparticle-stabilized-foam fracturing", Qajar,

Ultry Dry Foam (Q>90%)

Thank you!

- Participants:
 - Prof. Steven L. Bryant
 - Prof. Chun Huh
 - Dr. Ali Qajar
 - Dr. Andrew J. Worthen
 - Dr. Zheng Xue
 - Chang Da
 - Shehab Alzobaidi
- Funding
 - DOE Grant DE-FE0013723
 - Welch Foundation F-1319

Key finding #1: Mechanisms

- High continuous phase and surface viscosities produced as a result of opposite charge between surfactant and polymer
- CO₂/brine IFT reduced from 20 mN/m to 5 mN/m at 50 °C, 3000 psia
- Low lamellae drainage rates and low coalescence
- Small bubble size leads to high viscosity of 150-270 cP at 0.90-0.98 quality, at 200 s⁻¹
- NPs increase the apparent viscosity and stability of foam

Foam Stability: Lamellae Film Drainage and Coalescence

Lamella drainage (Reynolds)

$$V = -\frac{dh_f}{dt} = \frac{h_f^2}{3\mu_e R_f^2} \Delta P_{film}$$

$$\Delta P_{film} = 2(P_c - \Pi_d)$$

 $t \alpha \mu \gamma A^{-2} h^5$

Capillary pressure increases with foam quality

- Lamellae thinning influences Ostwald ripening and coalescence
- Raise stability:

lower P_{c} (lower IFT), incr. π_{d} , μ_{e} and h

• Micellar layering phenomena aids P_d (Wasan)

