Integrated Pre-Feasibility Study for CO₂ Geological Storage in the Cascadia Basin, offshore Washington State and British Columbia

DE-FOA-0001584 CarbonSAFE: Phase 1

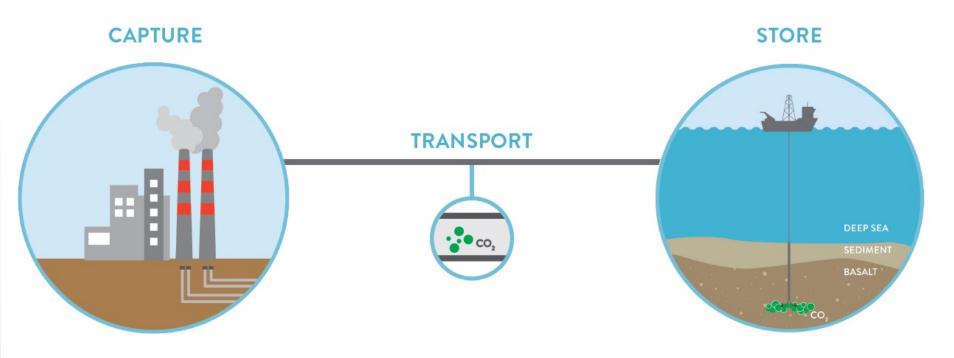
David Goldberg Lamont Doherty Earth Observatory of Columbia University

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 1-3, 2017

Outline

- 1. Project Team and Goals
- 2. CarbFix and Wallula projects
- 3. Technical Status: Cascadia offshore basalt
- 4. Synergies: Injection approaches for mineralization
- 5. Preliminary Accomplishments
- 6. Lessons Learned to date
- 7. Project Summary


CarbonSAFE Project Team

Objective:

Integrated pre-feasibility study to characterize an ocean basalt reservoir for safe and permanent storage of 50 MMT of CO_2 in the Cascadia Basin, offshore Washington State and British Columbia

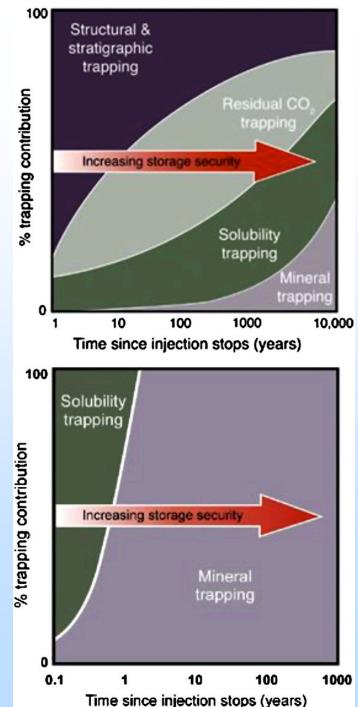
CarbonSAFE Project Goals

Goal 1: Technical assessment of offshore basalt reservoirs for safe and permanent CO₂ storage (e.g., reservoir characterization, CO₂ sourcing, transport, and monitoring at offshore site)

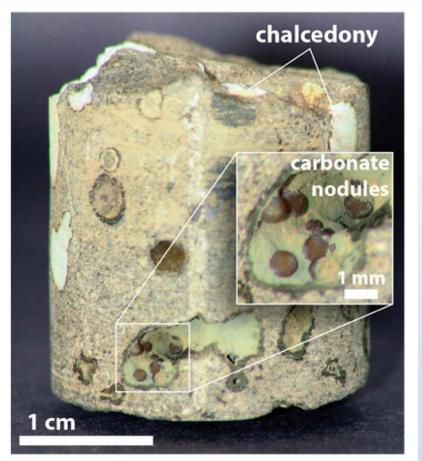
Goal 2: Non-technical assessment of offshore CO₂ storage site (e.g., regulatory framework, stakeholder engagement, risk assessment, financial needs and long-term liability)

CO₂ storage security and permanence in basalt

prevailing view in 2005


CO₂ injected into water reservoirs below the surface may be stored through structural, residual solubility and mineral trapping

current view in 2016


In situ mineralization via CO₂-fluid-basalt reactions occurs quickly (a few years)

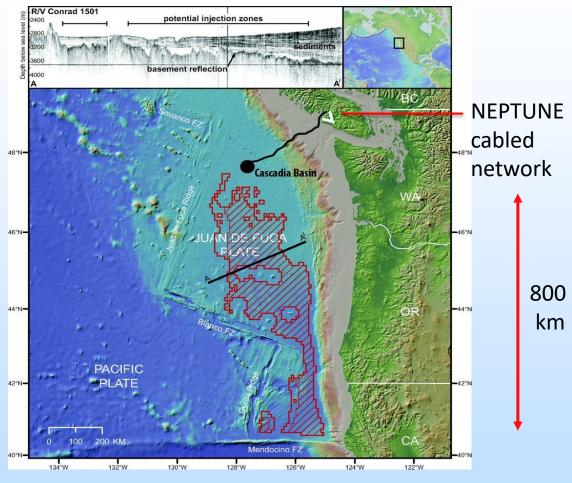
Snæbjörnsdóttir et al., IJGGC, 2017

Wallula, WA Basalt Pilot Project

Visual light imagery

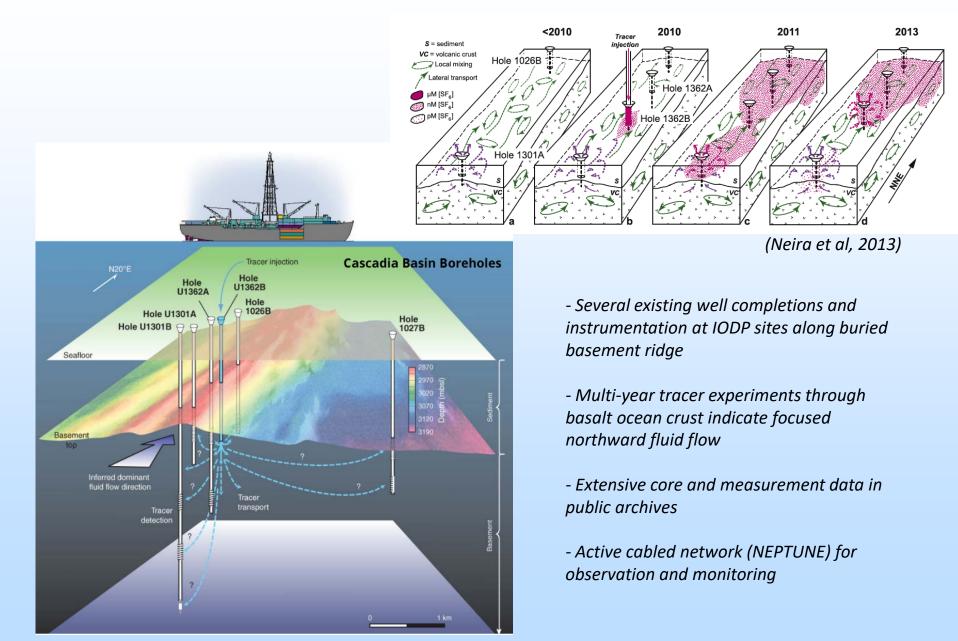
- Injected 1000 tons CO₂ (liquid) into permeable, layered basalt flow tops
- After 2 years, isotopic analysis of sidewall cores chemically distinguishes post-injection ankerite nodules from ambient carbonate
- Progressive enrichment in Fe & Mn over time indicates mineralization of host basalt, not re-precipitated calcite

McGrail et al., ES&TL, 2016

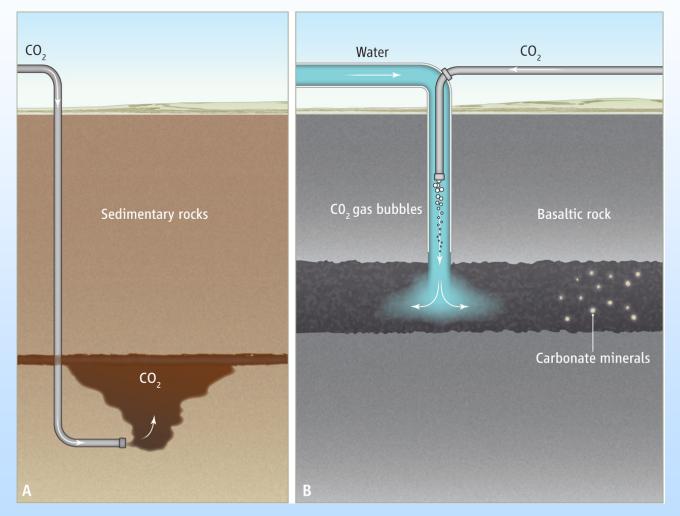

Upscaling questions: in situ mineral carbonation in basalt

- Do other adequate basalt reservoir sites exist?
- What are anticipated in situ reaction rates? Will scCO₂ injection rapidly precipitate carbonates, other minerals?
- What is best injection strategy for CO₂ with seawater for large volumes? To optimize mineralization?
- What large potential industrial sources of CO₂ could be delivered to the site?
- What are best monitoring and volume assessment methods?

CO₂ storage in the Cascadia Basin


*CO*₂ injected below sediments may be stored through physical, solubility, and mineral trapping mechanisms

CarbFIX and Wallula projects show mineralization occurs quickly (a few years)



(after Goldberg et al., 2008)

Existing physical data in Cascadia Basin

Injection approaches for mineralization: Synergies with Wallula and CarbFix projects

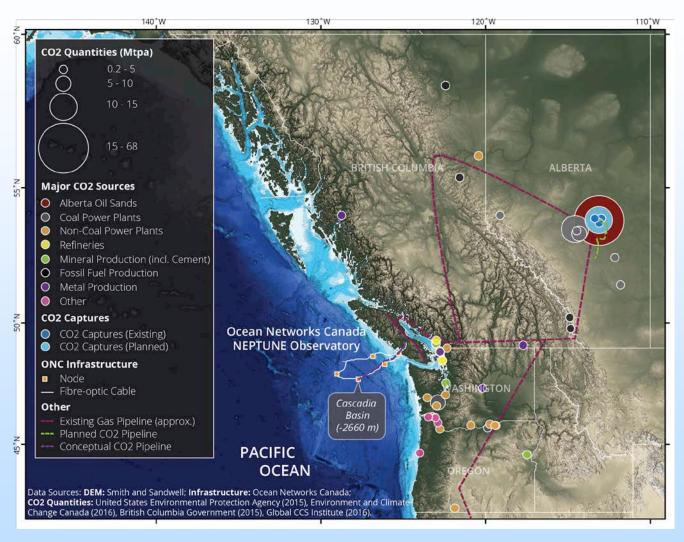
(from Gislason and Oelkers, Science, 2014)

Preliminary accomplishments

- Developed flyer describing the project and contacted potential industry-sourced CO₂ streams in the region
- Began laboratory analysis and injection modeling studies to optimize mineralization in basalt
- Compiled inventory of existing petrophysical, hydrological, and regional data in vicinity of the offshore reservoir
- Reviewed framework for offshore storage regulations in US and Canada

ALBERTA

COLUMBIA

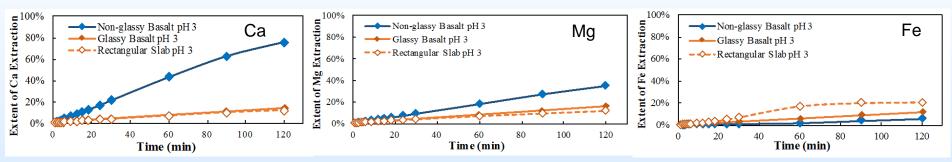

WASHINGTON

SASKATCHEWAN

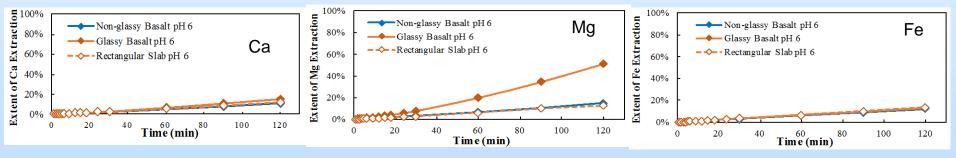
 Constructed initial risk registry for project-related risks and related NRAP modelingEGON

CASCADIA BASIN

Potential CO₂ sources near Cascadia area



(from M. Scherwath, Ocean Networks Canada, 2016)


Laboratory results in seafloor samples: CO_2 reaction rates in basalt

Differential Bed Reactor (DBR) Reactivity Experiments (1 bar @ 30°C, far from equilibrium)

Low pH ~3 Samples: 11.7% CaO, 7.4% MgO, 10.8% FeO

High pH ~6 Samples: 11.7% CaO, 7.4% MgO, 10.8% FeO

Results show differing behaviors in glassy and non-glassy basalt, especially under low pH conditions

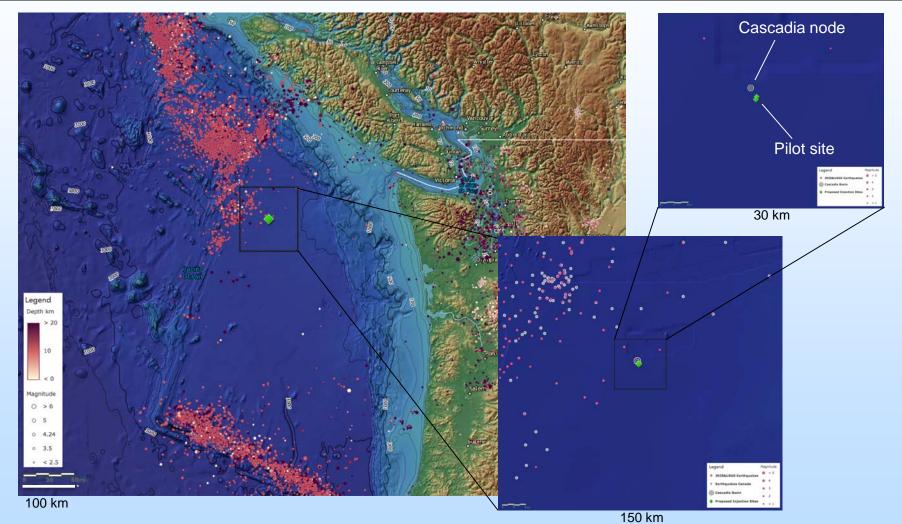
→ 76% Ca extraction from non-glassy basalt at low pH

Water Alternating Gas (WAG) miscible flooding for CO₂ mineralization in basalt

Initial 3-cycle model using STOMP-CO2 with ECKEChem to optimize for CO₂ solubility in seawater and mineralization in basalt

(see poster Thursday – Demirkanli, et al.)

Data Inventory and Management


Physical data categories, subtasks and status in inventory

	Data Categories									
Tasks	Bathymetry	Chemistry	CO2 Source and Transport	Heat Flow, Temperature and Pressure	Geologic Model	Physical Properties	Seismics	Seismicity	Site/Hole Info	
5.1: CO ₂ Source Availibilty			••[]							
5.2: CO ₂ Transportation to Offshore Storage Site			••[]						•	
5.3: Evaluation of Storage Reservoir	•[]	••		••[]	••	••		••	•	
5.4: Long-term Monitoring of CO ₂ Storage		D		••[]	D	••				
5.5: Risk Assesment of CO ₂ Storage		••			••	••	••[]	••		

Available	•
To be Produced	•
Known and Missing	П
Needed but Nonexistent	D

(as of 24 July 2017)

Natural Seismicity: Juan de Fuca tectonic plate

Data sources: IRIS Interactive Earthquake Browser; USGS Earthquake Catalog; Natural Resources Canada Earthquake Database; Ocean Networks Canada Cascadia Basin

Preliminary Project Risk Registry

Tally of identified project risks from the comprehensiveness analysis

Responsible Actor	R Tally	Component	C Tally	Time/Phase	T Tally	Location	L Tally	Goal	G Tally	Activity	A Tally
R01) Operator	16	C01) Management	7	T01) pre-FEED	1	L01) Capture plant	6	G01) Assess risks via ROMs	1	A01) Mission & Scoping	5
R02) Funder	3	CO2) Staff	0	T02) FEED	11	L02) Transit route	6	G02) Build integrated project	19	A02) Design	4
R03) Insurer	2	CO3) Finance	2	T03) Pilot-Demo	16	L03) Inj site surface	0	G03) Prove engrd system	3	A03) Teambuilding	4
R04) Chief Engr	10	CO4) Permits	17	T04) Build	0	L04) Resv Near Injector	11	G04) Execute On Schedule	2	A04) Characterize Site Geolog	3
R05) Chief Geosci	8	C05) Reservoir	4	T05) Operate	8	L05) Resv Far Field	8	G05) Execute On Budget	5	A05) Envt Bsln Monitoring	0
R06) Permits-Compliance	10	C06) Confining zone	1	T06) Close operations	1	L06) Non-localized	13	G06) Monitor & control	5	A06) Permits & Compliance	9
R07) Builder	1	C07) Static geologic mo	0	T07) Post-Closure/PISC	1			G07) Prove injectivity	4	A07) Communications	5
R08) Driller	1	C08) CO2 source	7					G08) Prove seal	2	A08) Surface construction	1
R09) Sfc Monitor	3	C09) Transport	6					G09) Prove capacity	1	A09) Drill & Complete	0
R10) Subsfc Monitor	7	C10) Injectors	2					G10) Inform public	5	A10) Capture ops	1
R11) Communications	10	C11) Monitoring sfc	3					G11) Plan next steps after pil	0	A11) Transmission ops	2
		C12) Monitoring subsfc	6					G12) No envt damage	2	A12) Injection ops	6
		C13) Dynamic model	3					G13) No one hurt	2	A13) Monitor & Model	6
		C14) Operations	1							A14) Finance & Control	3
		C15) Eco protection	2							A15) Management ongoing	0
		C16) Public consent	3							A16) Decommission	1

(as of 5 July 2017)

Lessons Learned to date

- Large potential sources of anthropogenic *CO*₂ exist in the region
- Existing regulations appear to restrict CO₂ transport across national boundaries (e.g., between US and Canada)
- Compiled hydrological data indicate basalt injectivity is high but likely anisotropic
- Laboratory studies of *CO*₂–basalt–water mixtures indicate large variability in reaction rates
- Real-time injection monitoring is feasible using NEPTUNE

- <u>Objective</u>: Integrated pre-feasibility study to characterize an ocean basalt reservoir for safe and permanent storage of 50 MMT of CO₂ in the Cascadia Basin, offshore Washington State and British Columbia
- <u>Accomplishments</u>: Technical and non-technical tasks for assessment of this storage option are on track for the anticipated project schedule
- <u>Next steps</u>: Project workshop, 3-5 October 2017

Thank you