

Simulating Transport of Perfluorocarbon Tracers in the Cranfield Geological Carbon **Sequestration Project**

Mohamad Reza Soltanian¹, Mohammad Amin Amooie¹, David Cole¹, David Graham², Susan Pfiffner³, **Tommy Phelps²**, Joachim Moortgat¹

¹School of Earth Sciences, The Ohio State University, Columbus, OH, ²Oak Ridge National Laboratory, Oak Ridge, TN, USA, ³The University of Tennessee, Knoxville, TN, USA

Objectives

- Simulation of multiphase flow of CO₂-brine and perfluorocarbon (PFC) tracer for Cranfield detailed area of study (DAS)
- Evaluating breakthrough curves (BTCs) and breakthrough times (BTs) for PFCs (PMCP, PMCH, PTCH, and PECH/PDCH) and SF_6 tracers co-injected with CO_2
- Study how combination of PFC pulses & simulation results help in constraining heterogeneity & flow paths development over time

DAS with an injector (F1) and observation wells F2 and F3 observation well injection well Numerical grid for DAS. The grid is $155 \times 195 \times 24 \text{ m}^3$, with 257,856 angle 5° hexahedral elements. Grid block size

98 - 112 m

60 - 68 m

Permeability (md)

Reservoir Simulator

- Multi-phase compositional *compressible* flow
- Thermodynamic equilibrium: equality of fugacities of components in each phase
- Cubic-plus-association (CPA) EOS

Figure 3

- Darcy & pressure equations by Mixed Hybrid FE (MHFE)
- 2nd order discontinuous Galerkin (DG) for transport equation

Numerical Set-up

- DAS within Cranfield (Figure 1 & 2)
- Petrophysical properties from The University of Texas at Austin, *Bureau of Economic Geology* (see Figure 3)
- Aquifer temperature: 128°C
- Initial pressure at bottom: 32 MPa
- CPA-EOS parameters tuned to match Cranfield data
- Brooks-Corey relative permeabilities

Figure 4 Injection rate -Simulation injection rate Field injection rate 100 200 Time (davs) Figure 5 Bottom-hole pressure F1 BHP Pressure - Simulatior F1 BHP Pressure - Observatior Time (days)

Figure 1

Figure 2

of $3 \times 3 \times 0.3 \text{ m}^3$

Formation permeability shows modeled fluvial channels

Figure 7

2009 and 2010 BTCs for PFCs and SF_6 for F2 (left column) and F3 (right column). Blue circles for times < 50 days correspond to measured data in the 2009 campaign. The 2010 measurements are located around 150 days

Figure 8 2010 BTCs for PFCs and SF_6 for observation wells F2 (left column) and F3 (right column). Measured data are shown on a different scale (right axis)

Injected mass, injection schedule, observed, and simulated BTs

2009 Callipaigh						
	Injected		Breakthrough time (days)			
			Observed		Simulated	
	Mass (kg)	Time (days)	F2	F3	F2	F3
РМСР	0.6	3.125	13.7	15.6	11	23.2
РМСН	1.1	0	11.6	17.2	10	23.2
	0.6	11.2	-	23.7	-	31
PECH	0.6	1.3	11.4	15.6	10.2	23.2
	0.6	3.125	-	17.0	-	31.5
РТСН	11	0.25	11 1	16.5	10.4	23.5

29.6

29

18.5

Residual brine saturation

Residual water saturation of 0.6 provides a better results for BTCs curves and pressure responses, especially at later times

9 days of CO₂ and PMCH injection starting at time 161.5 days (**2010 campaign**). The top 3 rows of panels only show 'new' CO₂ and PMCH, whereas the bottom row shows cumulative concentrations (2009 and 2010

Conclusions

- Simulations match the field data remarkably well over relatively short time-scales
- Larger discrepancy at later times due to the growing \succ complexity of developing flow paths and tracer transport
- Perfluorocarbon tracers offers a powerful tool to interrogate the subsurface in-situ
- Tracer BTCs + simulations can constrain reservoir properties \succ (e.g., distribution of fluvial depositional features) and physical processes (e.g., advection and diffusion) are

Acknowledgements

This work was supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy funding to Oak Ridge National Laboratory (ORNL) under project FEAA-045. ORNL is managed by UT-Battelle for the U.S. DOE under Contract DE-AC05-00OR22725.

References

Day

