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1. Introduction

The multiscale nature of the flow and trans-
port problems in porous medium is rising at-
tention in pratical applications
• petroleum reservoir recovery evaluations
• nuclear waste disposal systems
•CO2 sequestration
• groundwater remediation.

the Frio Brine Pilot experiment

We propose an adaptive multiscale ap-
proach to improve the efficiency and
the accuracy of numerical computations
by combining upscaling and domain de-
composition methods. We use the En-
hanced Velocity Mixed Finite Element
Method (EVMFEM) as a domain decom-
position approach to couple the coarse
and fine subdomains [3].

2. Motivation

•Direct numerical computation is computa-
tionally prohibitive, since
– Heterogeneity of porous media
– Complexity of dynamic systems
•Capture fine scale features

– Higher resolution only near well-bore:
polymer injection, gas injection

– Non-linear reactions with large variation
in reaction rates

• Effective parameter computation precision
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3. Model formulation

Γi,j = ∂Ωi ∩ ∂Ωj Γi = ∂Ωi \ Ω J = (0, T )

Phase Mass Conservation
∇ · u = q in Ωi × J

u = −K
µ
∇p in Ωi × J

Component Mass Conservation

∂(φc)

∂t
+∇ · (uc−D∇c) = qαĉ + r(c) in Ωi × J

Boundary and Initial conditions

u · n = 0, uc · n = 0 on ∂Ω× J

c = c0, p = p0 at Ω× {t = 0}

Methods

The key objective of this work is to develop upscaling approaches to minimize the use of
fine scale information for time varying initial and boundary conditions. A fine scale flow
and transport problem is solved only in specific subdomains while solving a coarse scale
problem in the rest of the domain. This involves special treatment of sharp interfaces as-
sociated with the transport equations. We define transient regions as subdomains where
spatial changes in concentration are significant. Away from the transient regions, upscal-
ing is performed locally by using a numerical homogenization to obtain effective equations
at the macroscopic scale. A fine grid is then used in the transient regions and a coarse
grid everywhere else resulting in a non-matching multi-block problem.

Numerical Homogenization

Ansatz for the solution

fε(x) = f0(x, y) + εf1(x, y) + ε2f2(x, y) + ..

where fi(x, y) is a function of both x and y, periodic
in y and y =

x

ε
.

The gradient operator scales as ∇ = ∇x + ε−1∇y.
We expect u = uε → u0 as ε→ 0.

Enhanced Velocity Mixed FEM

𝛀𝑹𝛀𝑳 𝜞

On interface Γ

• extra velocity
• directly construct a flux-continuous ve-

locity approximation

4. Adaptivity criteria

•Criteria 1 (gradient in time):

Ωf =
{

x : |cn(x)− cn−1(x)| > εtadap

}
•Criteria 2 (gradient in space): We define

Ωneighbor(x) = {y : y ∈ Ej, |∂Ei ∩ ∂Ej| 6= ∅, if x ∈ Ei.}

The criteria can then be defined as,

Ωf =
{

x : max|cn(x)− cn(y)| > εsadap ∀y ∈ Ωneighbor(x)
}

5. Numerical Experiments

5.1 Homogeneous permeability
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Figure 1: Concentration profiles at 100
days for fine (top) and adaptive (bottom)
approaches
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Figure 2: Tracer concentration history at
production well for a homogeneous per-
meability distribution of 50 mD

5.2 Benchmark datasets: SPE 10
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Figure 3: Concentration profiles at 100 days
for coarse (top) , fine (middle) and adaptive
(bottom) approaches
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Figure 4: Fine and Coarse scale perme-
ability distributions for SPE 10 layer 37
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Figure 5: Tracer concentration history at the production well for SPE layer 37.

6. Conclusions

We developed an adaptive multiscale scheme using local numerical homogenization and EV MFEM for
upscaling single phase flow and transport in a heterogeneous porous media. The numerical results on
different layers of SPE10 also indicate that an upscaling based solely upon numerical homogenization is in
good agreement with the fine scale solution for a Gaussian or periodic permeability distribution. However,
for highly channelized for layered permeability distributions the results deviate substantially. The adaptive
multiscale scheme, on the other hand, is in good agreement for Gaussian, periodic, and layered perme-
ability distributions and is approximately faster than the fine scale simulation for a tracer slug injection of 50
days in all the above numerical tests. It is important to note that a tracer slug injection is specifically chosen
to test adaptivity since there are two transient regions at the front and back of the injected slug. The accu-
racy of the adaptive multiscale approach presented here, compared to the fine scale solution, is dependent
on the nature of physical process and validity of the adaptivity criteria in capturing fine scale physics. An
optimal tolerance for the adaptivity criteria is chosen to reduce computational cost without substantial loss
in solution accuracy.
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