
Statement of problem:

Can we confidently detect small leaks in large areas with a 
limited number of sensors?

Many current challenges in energy require predicting the coupled 
behavior of multiple subsurface systems (i.e., beyond the 
reservoir), each of which may be governed by different physics 
and each with its own heterogeneity and uncertainty.  This first 
aspect requires new simulation strategies that can address 
physics beyond simple porous flow; and the second aspect 
means these strategies must be rapid to allow for probing 
behavior stochastically.

One common challenge involves detection of small leaks in large 
areas, as shown in the example below from CO storage.  
Detecting these types of leaks will require new strategies that 
fuse simulation and monitoring. In this work, we are developing a 
platform to address this challenge.  Predicting the anticipated 
signals from such leaks requires couples the physics of porous 
flow to the physics of flow in fracture networks and partially 
completed wellbores.

Approach:
The development of efficient and accurate approaches to provide 
decision support for subsurface energy-related challenges 
requires the coupling of three components:

1. detailed knowledge of subsurface energy-related processes,

2. computationally efficient and accurate science-based full-
physics modeling strategies, and

3. novel statistical and machine learning approaches to extract 
fundamental and essential relationships from full-physics 
simulations.

Why this research is being done at Los Alamos National 
Laboratory
LANL provides a unique research environment where all three 
necessary components discussed above coexist. LANL also has 
a long history of pooling resources with other institutions to tackle 
subsurface energy related challenges (e.g., NETL, PNNL, LBNL, 
LLNL). In this poster, we present approaches to solve subsurface 
energy related challenges that integrate these three components. 

Tools we are developing and using to address complex, 
subsurface energy-related challenges:

1. FEHM (fehm.lanl.gov) – Multi-component, multi-phase 
subsurface flow and transport simulator

2. DFNWorks (http://www.lanl.gov/…/dfnworks/index.php)–
Discrete fracture network generation code 

3. MATK (matk.lanl.gov)– Python package for model analysis and 
distributed, concurrent model execution

Approach 1: Response surface modeling 
of leakage along cemented wellbores 
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• Abandoned wellbore leakage is one of the primary 
risks in CO2 sequestration.

• Full-physics simulations of multi-phase, multi-
component brine and CO2 are computationally 
expensive. 

• We use Multivariate Adaptive Regression Splines 
(MARS) to extract the fundamental relationships
between input parameters and brine and CO2 leakage 
into basis function response surfaces.
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• Latin Hypercube 
Sampling of 
parameters

• Automatically 
generated mesh

• Science-based full-
physics simulations

• Inputs and outputs 
are collected and 
processed into a 
basis function 
response surface 
using MARS.

• Cross-validation is 
used to verify the 
predictive capability 
of the response 
surface
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• Fractures provide dominant transport pathways in 
many scenarios such as fractured caprock above CO2
injection reservoirs. Discrete Fracture Networks 
(DFNs) allow us to model fracture flow more accurately 
and realistically.

• Coupling DFN model with continuum approach to 
study CO2 flow is a computationally complex system, 
which provides an example of risk quantification.
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• The	DFN	is	generated	using	dfnWorks simulation	tool	
• The	2D	fracture	network	is	meshed	by	conforming	
Delaunay	triangulation	(LaGriT)

• The	simulation	domain	size	can	be	extended	up	to	
kilometers

• Different	fracture	densities	can	be	considered	(0.1	<	
P32 <0.6)	
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• Machine learning is a powerful tool to effectively detect 
unknown pattern from datasets.

• We employ  machine-learning to detect the leak location 
of the stored CO2.

• We generate training datasets using FEHM to simulate 
the actual leaks of CO2.

• Our detection algorithm is trained with pressures resulting 
due to leaks at 2 locations only, but can detect leakage 
from any location in the caprock based on monitoring 
observations at 2 locations.
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• We employ  the above training 
data to train our supervised 
learning methods.

• 500 unknown leak cases are 
created by varying the CO2
injection rate.

• Prediction error is measured by 
Mean Absolute Error (MAE):
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Merging	Discrete	Fracture	Network	(DFN)		and	Volume	Mesh

Realistic	simulations,	
representing	not	only	
geologic	complexity	
but	also	operational	
conditions	
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Approach 2: Improved modeling of CO2
flow in fractures

Approach 3: Using machine learning to 
detect CO2 leakage
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Methods	and	Results
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• Overall MAE ≈3 grid points.
• Detection error:

Ø within 1 grid point:   41.4%
Ø within 2 grid points: 60.6% 
Ø within 3 grid points: 72.8%
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