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Program objectives
The proposed research program focuses on three areas to advance syngas turbine design: 
1.   syngas chemistry
2.  fundamental ignition and extinction limits of syngas fuels
3.  data distillation for rapid transfer of knowledge to gas turbine design.  
The project objectives were:
1. To develop and validate accurate and rigorous experimental and computational data 

bases of syngas reaction kinetic and fundamental combustion properties, 
2. To develop detailed and reduced syngas chemical mechanisms that accurately reproduce 

the new experimental data as well as data in the literature, 
3. To develop a quantitative understanding of the stability of syngas combustion to 

fluctuations in the flow field, including the opportunities and challenges of exhaust gas 
recirculation (EGR) on extinction, ignition and flame stability, 

4. To develop domain maps which identify the range of conditions (e.g. temperature 
stratification, turbulence, etc.) where syngas combustion can be effected in both positive 
and negative manners (e.g. accelerated autoignition).  
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Chronology of outcomes

Case A (Initial T profile)

effects of HMDSO on syngas ignition
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Motivation

• Ignition controlled by H2/CO 
chemistry

• Ignition chemistry is relevant to 
flame chemistry

• Major discrepancy for low 
temperature syngas ignition delay

• Transition between weak and 
strong ignition could be the cause of 
observed discrepancies

• When does weak ignition occur and 
why?  Possible explanations:

– Uncertainties in rate 
coefficients

– Incomplete reaction 
mechanisms

– Surface-catalytic mechanisms
– Wall heat transfer
– Turbulence
– Ignition regimes

Kinetic Model Predictions

Experimental Data

20 bar

Petersen et al.3

Why does ignition behavior matter?
What is the source of the observed discrepancies between models and experiments 
at lower temperatures?



First color high-speed imaging of 
syngas ignition

CMOS imaging, high-speed color digital video camera: 25,000 fps, 512× 512 pixels, exposure time of 40 ms

Defining weak, strong and 
mixed ignition.
 an example of mixed 
ignition



Typical results: mixed syngas 
ignition

• Pressure time history
• High-speed imaging 
• T = 1006 K, P = 2.71 atm
• Inert gas: O2 ratio = 5.91
• f = 0.5, 
• 5.04% H2, 7.26% CO  

0 ms (EOC) 1 ms 2 ms 3 ms 4 ms

5 ms 6 ms 7 ms 8 ms 9 ms 9.13 ms



Experimental results for syngas 
isolate the source of discrepancy

So we identify weak, strong and mixed ignition for a large state and 
syngas mixture composition space.



Experimental results for syngas 
isolate source of discrepancy

Weak ignition accelerates ignition delay times.
Larger effects observed at lower temperatures.



Can we correlate syngas ignition 
behavior?

Yes!  We can map P, T auto-ignition behavior of syngas mixtures.  Invaluable for 
captains in uncharted territory, i.e. for data interpretation, to develop and test 
theory, to design stable systems, etc.  But takes a lot of effort.
.

φ = 0.5, 
Air Dil.

Inhomog.

Homog.

(P = 3.3 atm, T = 1043 K, φ = 0.1)

(P = 9.2 atm, T = 1019 K, φ = 0.5)



Can we predict syngas ignition 
regimes? 

Yes!  The boundary of ignition regimes can be predicted using 
dtign/dT (fuel property) or dT/dx (state condition).

But what about other fuels, other conditions, turbulence, etc.? 
Is there a unifying theory?



Yes! There is a unifying theory to 
predict ignition behavior

The Zeldovich(1980)-Sankaran(2005) ignition criterion 
for laminar flame systems:

Sa = b SL
Ssp

= bSL
dt ig
dT
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ø÷

dT
dx

æèç öø÷ b » 0.5
Sa >1
Sa <1
ìíî

Deflagration – Weak Ignition
Spontaneous Front – Strong Ignition

where             reflects the fact that very rapid spontaneous front 
propagation is needed to ensure nearly homogeneous strong ignition.  b <1

Validated with UM RCF syngas ignition experiments.
But what about the effects of turbulence?



Extending the laminar ignition 
regime criteria

We defined a turbulent Sankaran Number:

where

 

Da ℓ < K 2

Da ℓ > K 2
ìíïîï
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Strong
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Ignition Criterion:

However, the fluctuations will dissipate before the front forms if 

 

Dal ,ig = Da ℓ Reℓ-1/3 Dal ,ig >1
Dal ,ig <1
ìíîï

Dal ,ig <1
Weak ignition possible
Mixed/Strong (mixing-dominant)

 Daℓ <1 Strong (mixing-dominant)

(reaction-dominant)



Turbulent Ignition Regime Diagram
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Regime Diagram Validation
2D DNS of Syngas Autoignition: Numerical Setup

P0 = 20 atm, φ = 0.5, H2: CO = 0.7:1 (molar)

• Periodic boundary conditions on all sides
• Passot-Pouquet turbulent kinetic energy spectrum
• Uncorrelated temperature and velocity fields
• Hot spot superimposed on the random T field at the

center of the domain
• Syngas/air detailed chemical kinetic mechanism with 12

species and 33 reactions (Li et al. 2007)

Case A (Initial T profile)



Regime Diagram Validation
2D DNS of Syngas Autoignition: Numerical Setup

P0 = 20 atm, φ = 0.5, H2: CO = 0.7:1 (molar)

A

C

B



Case A: Weak Ignition
ig/ 0.41t t =

ig/ 0.48t t =

A reaction front consumes a significant portionof the mixture until the end-gas auto-ignitionoccurs.



Case B: Strong Ignition  - Reaction 
Dominant 

ig/ 0.63t t =

ig/ 0.77t t =

Due to the high reactivity and lower temperaturesensitivity of the bulk mixture, the ignition kernelquickly leads to the bulk gas auto-ignition;spontaneous ignition front emanates from theignition kernel.



ig/ 0.33t t =

ig/ 0.94t t =

The stronger turbulence leads to rapiddissipation of the scalar fluctuations, resultingin nearly homogeneous auto-ignition.

Case C (Strong Ignition – Mixing-Dominant)



Pressure Time Histories

A

C

B

Case A shows significant ignition enhancement compared with
cases B and C! Weak ignition accelerates ignition in comparison
to a homogeneous initial condition.  Additional confirmation of
the source of the modeling and experimental discrepancies.



Summary and Reflections

Mystery solved/discrepancy resolved!
• The Zeldovich-Sankaran criterion predicts weak/strong ignition behavior in terms of global 

parameters. 
• Theory has been validated by physical and numerical experiments.
• The ignition sensitivity (K) is more than just a characteristic time scale, a conventional Da-Re 

characterization is not sufficient to describe the ignition/combustion phenomena.
• High-K mixtures are more susceptible to weak ignition, which happens at low temperatures for 

hydrogen/syngas mixtures. 
• The observed ignition advancement for syngas at low temperatures can be attributed to weak 

ignition behavior.



Wrapping-up our syngas studies
• Experimental studies of syngas OH kinetics and 

the effects of impurities on syngas combustion -
particular concern for organosilicon compounds

• Silanols, siloxanes increasing in concentration 
in landfill-based syngas.  

• Known to foul; effects on combustion?
• Studies of TMS and HMDSO completed
• OH data acquired and kinetic analysis in 

process

Si(CH3)3OH (CH3)3SiOSi(CH3)3
trimethylsilanol (TMS) hexamethyldisiloxane (HMDSO)



Thank you!   
Questions/Comments?
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Methods: typical results and 
analysis

Typical Pressure Trace Analysis
• Average thermodynamic 

state assigned to capture 
heat loss at EOC

•  ௗ
ௗ௧for second stage

• ଵ ௗ
ௗ௧for first stage



New OH Laser Absorption System

Pump 
Laser Ring Laser Wavemeter

Powermeter

(Burner)

~532 nm 306.687 nm

613.374 nm

UM-RCF 
Test Section

Pho
to-

De
tec

tor

Heated Window Ports

DAQ

(Ref.)

(Probe)

• Low precision targets dominate (τign, sL0) available kinetic data
• Important O, OH, H radical data very limited for H2 (high-T, low-P, ultra dilute) [29], 

unstudied for syngas

Goal
Measure χOH(t) during 
syngas auto-ignition. 
Conditions
P ~ 5 atm, T ~ 1000-1090 K
φ = 0.1, ~Air Dil., N2 (Ar)
Fuel: 30% H2, 70% CO
Computations
Li 2007 mech.
NUIG 2013 mech. [19]



Results: effects of HMDSO on 
syngas ignition

• Pressures 9.5-10.2 atm, 
Temperatures 1050-1062 K

• (1) Pure syngas
(2) Syngas + 100 ppm HMDSO

• Pressure trace normalized by 
effective pressure

 Ignition delay noticeably decreased with addition of 100 ppm HMDSO
 Magnitude of pressure increase is greater with HMDSO
 Two stage heat release apparent with and without HMDSO 



Typical χOH time history

 Clear absorption feature
 Excellent agreement between measured and predicted χOH(t)
 Interrogation of multiple features possible (magnitudes, slopes), 

to improve chemical kinetics



Results: effects of HMDSO on 
syngas ignition

 Delay times for both first and second ignition decreased with 100 ppm HMDSO
 Second ignition delay time decreased by ~ factor of 2 with 100 ppm HMDSO



UM RCF: experimental setup for
ignition studies

EOC pressures from 0.5 to 30 atm by varying:
Compression ratio
Nosecone design
Fill pressureIsentropic compression in the core
Taxis ≈ TS ± 5%TS65% of V at ± 10%TaxisTest section dimensional characteristics:
V≈ 200 cm3
V : AS ≈ 0.8-1.1Ignition test  times from 1 to 60 ms

Convergent  Section
Extension Section Test Section

PolycarbonateEnd Wall
Optical Port (x3)Pressure Transducer(Kistler 6041AX4) Load Distributer 32



Current work on ignition 
impurities

• Expanding the ignition data set on HMDSO
• Interpreting of the effects of TMS and the effects of HMDSO, based on 

chemical structure and H2/CO elementary chemical kinetics
• OH measurements during ignition of syngas with and without TMS and 

HMDSO 
– Laser system restarted after building renovations
– Thick-etalon assembly replaced



Current work : OH measurements 

• Low precision targets dominate (τign, sL0) available kinetic data
• Important O, OH, H radical data very limited for H2 (high-T, low-P, ultra dilute) [29], 

unstudied for syngas

Goal
Measure χOH(t) during syngas auto-ignition. 
Conditions
P ~ 5 atm, T ~ 1000-1090 K, φ = 0.1, ~Air Dil., N2 (Ar)
Fuel: 30% H2, 70% CO, with and without TMS and HMDSO impurities

 Previous UM RCF work 
showed visible OH absorption 
feature

 Excellent agreement between 
measured and predicted χOH(t)

 Interrogation of multiple 
features possible (magnitudes, 
slopes), to improve chemical 
kinetics



Turbulence Extension of Sa
Sankaran (Zeldovich) Number (RANS/LES “Turbulence” Version) 

where

hence
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Front Propagation Speeds

A

C

B

For case A, the minimum front speed is close to SL, indicating deflagrative front propagation.
For cases B and C, the minimum front speed is much higher (by over a factor of 4) than SL,suggesting that spontaneous propagation is the dominant combustion mode.
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Regime diagram validation
2D DNS: Evolution of temperature field

A
C

B

A. Weak Ignition B. Strong Ignition
(Reaction-dominant)

C. Strong Ignition
(Mixing-dominant)



Schematic of Scales

L

 ℓl
d fSL  

L
ℓ
l
d f
SL

: chamber length (not considered)
: integral eddy scale
: Taylor microscale
: Deflagration flame thickness
: Laminar flame speed

Homogeneous turbulence:
ℓ
l = Reℓ1/2 = ¢u ℓ

næèç öø÷
1/2

; ¢u
¢ul =

ℓ
læèç öø÷

1/3

= lT( )

Im, Pal, Woodridge, Mansfield, Combustion, Science and Technology (2015)


