

A Joint Experimental/Computational Study of Non-idealities in Practical Rotating Detonation Engines

PI: Mirko Gamba

Co-I: Venkat Raman

Department of Aerospace Engineering University of Michigan

2016 UTSR Workshop, November 1-3, 2016 Blacksburg, VA

DOE FE0025315 with Dr. Mark C. Freeman as Program Monitor

Outline

• Introduction to the problem and general approach

- Experimental activities
- Computational activities

Overarching objectives

• Use laser diagnostics to:

- Develop canonical systems for RDE investigation
- Understand the physics of RDE in lab- and full-scale configurations
- Provide data for validation

• Use high-fidelity simulations to:

- Understand basic detonation physics
- Simulate full scale RDEs

Overarching goal: investigate non-idealities and their link to loss of pressure gain

Detonation non-idealities

- Incomplete fuel/air mixing
- Fuel/air charge stratification
- Mixture leakage (incomplete heat release)
- Parasitic combustion:
 - Premature ignition (e.g., burnt/unburnt interface)
 - Stabilization of deflagration (flame)
- Detonation-induced flow instabilities
 - Richtmyer-Meshkov (R-M) instability
 - Kelvin-Helmholtz (K-H) instability
- They lead to loss in pressure gain
 - Linked to loss of detonation propagation
- Additional losses exist during flow expansion
 - Secondary shock and (multiple) oblique shock
 - Flow instabilities (e.g., K-H instability)
 - Mixture leakage through burn/unburnt interface

From: (top) Nordeen et al., AIAA 2011-0803

Objectives and tasks

Our approach: a multi-level physics study

Unit-physics decomposition

- Laser-based imaging
- Mixing measurement
- Detonation structure
- Temperature and species imaging

Injection & mixing

- Multiple injection mixing
- Shock-induced mixing
- DNS/LES modeling
- Experiments

Turbulence & detonations

- Linear analogue
- Detonations in stratified mixtures
- DNS/LES modeling
- Experiments

Detailed modeling

- Variable mixture ignition model
- Homogeneous reactor model with tabulated ignition times
- Non-equilibrium

Today we will discuss

• Experimental component:

- Initial investigation of shock-induced mixing
- Development of lab- and full-scale RDE systems

• Computational component:

- Effect of nonequilibrium on detonation cell size
- Effect of injector mixing on detonation propagation

Outline

- Introduction to the problem and general approach
- Experimental activities
- Computational activities

Planned experimental multi-level approach

RDE full system:

- Link between mixing and performance
- Design from ISSI/AFRL

Linearized analogue:

- Detonation structure
- Detonation/turbulence interaction
- Detonation in stratified mixtures
- Design from ISSI/AFRL

Single or multiple injectors:

- Mixing studies
- Shock-induced mixing
- Our starting point

Shock-induced mixing: detonation/shock analogy

Detonation Temperature Pressure Unburnt Burnt $\frac{u_2}{u_i} \& \frac{\rho_2}{\rho_i}$

Shock analogy

- Wave speed D (Mach number)
- Jet-to-ambient (induced flow) density and velocity ratios
- Injection pressure and configuration

From: Schwer D. A. and Kailasanath K., AIAA 2010-6880

Shock-induced mixing: detonation/shock analogy

- Open questions:
 - Does the analogy hold?
 - In what ways mixing in a non-detonating flow captures mixing in detonation
 - Impact of shock compression on turbulent mixing and structure

From: Schwer D. A. and Kailasanath K., AIAA 2010-6880

Shock-induced mixing: detonation/shock analogy

- We answer the questions by combining:
 - Experimentation in canonical flow
 - High-fidelity simulations of detonating and non-detonating flowfield (multipleinjectors)

 \dot{m} ": Mass flux

Case	Ambient	Jet	Wave Mach	Detonation
А	Air	Helium	1.9	H ₂ /Air
В	Air	Methane	1.4	CH ₄ /Air
С	Air	DME	2.1	C_2H_2/Air
D	Air	DME	1.5	C ₃ H ₈ /Air

Case	Ambient	Jet	Wave Mach	Detonation
А	Air	Helium	1.9	H ₂ /Air
В	Air	Methane	1.4	CH ₄ /Air
С	Air	DME	2.1	C_2H_2/Air
D	Air	DME	1.5	C ₃ H ₈ /Air

Configuration	<i>d,</i> mm	<i>S</i> , mm
1	2	
2	2	6.35
3	0.8	3.5

Note: non-reacting cases

Shock-induced mixing in turbulent jets

- Flexible configuration
 - Single isolated injector
 - Multiple isolated injectors

- Well-suited for controlled unitphysics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)

Shock-induced mixing in turbulent jets

- Flexible configuration
 - Single isolated injector
 - Multiple isolated injectors

- Well-suited for controlled unitphysics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)

Shock tube facility

Interaction of shock wave with turbulent jet

M = 1.39

- Detonation-induced mixing analogue
- Visualization data
 - -100 kHz movie with 300 ns exposure (shock smears by 0.13 pixel)
 - Injection of H₂ into still air subject to a Mach 1.39 shock wave
 - Played back at 5 frames/second
 - Elapsed time 0.5 ms (50 frames)

From initial work presented at UTSR 2015 Workshop

Interaction of shock wave with turbulent jet

From initial work presented at UTSR 2015 Workshop

U

2

1

 \mathcal{U}_i

Interaction of shock wave with turbulent jet

From initial work presented at UTSR 2015 Workshop

U

2

1

 \mathcal{U}_i

Example of diagnostic application: Making LIF measurements quantitative

Study of transverse jets in supersonic crossflow – non-reacting mixing using toluene PLIF thermometry

Interaction of shock wave with multiple turbulent jet

Case B1-2: *M* = 1.4

• Detonation-induced mixing analogue

- Visualization data
 - -82 kHz movie with 300 ns exposure (shock smears by 0.13 pixel)
 - Injection into still air subject to a shock wave
 - Played back at 5 frames/second
 - Elapsed time 0.5 ms (50 frames)

Strong jet density variation Impact on:

- Shock propagation speed across jets
- Shock front curvature

Shock strength variation Impact on:

- Jets compression
- Jets instabilities
- Jets structure and scale
 orientation
- Mixing

Strong jet density variation Impact on:

- Shock propagation speed across jets
- Shock front curvature

Shock strength variation Impact on:

- Jets compression
- Jets instabilities
- Jets structure and scale
 orientation
- Mixing

Ongoing work on interaction of shock wave with turbulent jet array: Mixing study using tracer PLIF

- Shown is a qualitative flow visualization
- Nearly the same density ratio, but case
 B-4 has 4x the velocity ratio of case B-1
- Velocity ratio affects post-shock mixing field
 - More rapid mixing behind the shock wave as velocity ratio increases
 - Why?

Ongoing work on interaction of shock wave with turbulent jet array: Parametric study and outcome M = 1.39

- Parameters to be varied
 - Shock strength (Mach #)
 - Injectant/ambient species
 - Light/heavy vs heavy/light
 - Injectant-to-ambient density and velocity ratios
 - Injection pressure ratios
 - Injection configuration

- Performance metrics
 - Degree of mixing (spatial measurement)
 - Plume shape
 - Width, corrugation, deflection
 - Length and time scales of injector response
 - Scaling with working parameters
 - Density & velocity ratios
 - Plume compression rate
 - Injector size and spacing

Planned experimental multi-level approach

RDE full system:

- Link between mixing and performance
- Design from ISSI/AFRL

Linearized analogue:

- Detonation structure
- Detonation/turbulence interaction
- Detonation in stratified mixtures
- Design from ISSI/AFRL

Single or multiple injectors:

- Mixing studies
- Shock-induced mixing
- Our starting point

Development of a flexible RDE hardware at U-M

Development of a flexible RDE hardware at U-M

- Modular configuration
- Multiple injection schemes
 - AFRL design (radial injection)
 - Semi-impinging jets (ONERA¹)
 - Pintle injector (NRL²)

Gaillard et al., Acta Astronautica, 111:334-344 2015
 Schwer & Kalaisanath, 2015 AIAA Scitech, AIAA-2015-3782

Development of a flexible RDE hardware at U-M

Gaillard et al. (2015) evaluated different jet configurations

a: periodic b: symmetric

From Gaillard et al., Acta Astronautica, 111:334-344 2015

Gaillard et al. (2015) evaluated different jet configurations

From Gaillard et al., Acta Astronautica, 111:334-344 2015

Schwer & Kailasanath evaluated a pintle-like design

- Azimuthal stratification
- Detonation could not be stabilized

Flexible RDE hardware (Round RDE)

Testing of the afterburner

Next steps on the development of RDE system

- Evaluate flow properties (non-reacting) produced by RDE
- Integration of RDE with exhaust, supply and control systems
- Testing of integration, control system and test sequence under unfueled operation
- Testing under fueled operation

How it will look like after integration is completed

Gas sampling (exhaust emission measurements)

Planned suite of diagnostic techniques for the study of RDE physics

- Traditional techniques:
 - Pressure, heat flux, flame chemiluminescence
 - Schlieren imaging
- Laser-based imaging diagnostics:
 - Planar laser-induced fluorescence (PLIF) mixing and flame marker
 - Two-color toluene PLIF thermometry and mixing (non-reacting) imaging
 - OH/CH₂O/CH/NO PLIF imaging
 - e.g., Simultaneous OH/CH₂O PLIF imaging for flame structure and heat release distribution study in premixed combustion
 - Rayleigh scattering imaging (thermometry in reacting flows)
- But we need an optically accessible system

Simultaneous OH/CH₂O PLIF imaging in inverted oxy-fuel coaxial non-premixed CH₄ flames

Development of linearized RDE (what originally planned)

- Designed after AFRL design (radial injection)
- Pre-detonator to generate a planar detonation designed
- Designed, but not built yet

Development of linearized RDE (what originally planned)

• Benefits

- Simple configuration to study and model
- Allows for optical access for laser diagnostics

Drawbacks

- Intermittent operation (2 or 3 detonation cycle)
- Unclear if a fully-developed detonation wave can be achieved (due to limited length and intermittent operation)
- May not allow to reach stationary parasitic combustion

Proposed hybrid RDE

- Designed with features similar to our RDE configuration
- Feasibility design study almost completed
 - Awaiting verification of optical components

Our design:

- Resolves optical access limitations of round RDE
- But optical access through curved wall is required
- We have designed an optical arrangement to access the detonation chamber through curved wall

Our design:

- Resolves optical access limitations of round RDE
- But optical access through curved wall is required
- We have designed an optical arrangement to access the detonation chamber through curved wall

Next steps for experimental program

- Detailed studies of shock-induced mixing in single and multiple injector configurations
 - -All systems operational
 - Complete mixing measurements on parametric study
- RDE
 - Complete integration of RDE and testing
 - Investigation of performance of different injectors
 - Inform future work on RT-RDE
- RT-RDE
 - -Verify optical access design (prototype window should be delivered this month)
 - Fabrication and instrumentation (design is complete, shop selected)
 - Investigate detonation structure and the link between unmixedness, detonation structure and pressure gain
 - Speciation distribution
 - Detonation speed and height, pressure time history
 - Transition and stabilization to deflagration mechanisms

Outline

- Introduction to the problem and general approach
- Experimental activities
- Computational activities

Computational Study of Non-idealities in RDEs

Venkat Raman University of Michigan

Outline of Simulation Results

- Effect of nonequilibrium on detonation cell size
- Effect of injector mixing on detonation propagation
 - Blast wave/detonation comparison
 - Multi-injector DNS
 - Detonation structure analysis

Thermal Nonequilibrium Modeling Considerations

Thermal equilibrium is not preserved through shocks, resulting in underpopulated vibrational states

- Relaxation depends on species and collision timescales
- Relevant if relaxation is comparable to reacting and mixing scales, i.e.,

 $\tau_{relax} \approx \min(\tau_{react}, \tau_{flow})$

Vibrational Nonequilibrium: Ab-initio Derived Rates

- QCT-based state-specific reaction rates used to calibrate model
 - Model matches QCT results at high temperatures
 - Nonlinear/higher-order model required at lower temperatures

 $H + O_2(v) \longrightarrow O + OH$

- Proposed model
- QCT results

Detonation Wave Simulation: Equilibrium Case

- Baseline solution simulated assuming thermal equilibrium
 - Stoichiometric hydrogen-air mixture initially at 300 K and 1 atm
 - → Ignition length near 2.1x10⁻⁴ m from the shock front (\approx 1x10⁻⁴ s)
 - Temperatures pre-shock, post-shock, and post-combustion are 300, 1510, and 2920 K

Detonation Wave Simulation: Relaxation Scales

• Recall the nonequilibrium relaxation factor:

 $\frac{\tau_{relax}}{\min(\tau_{reac}, \tau_{flow})}$

- Consider two simulations:
 - A Reactive simulation with thermal equilibrium
 - B Inert simulation with vibrational nonequilibrium
 - O₂ relaxes to a quasi-steady state within 2x10⁻⁵ m
 - H2 and N2 relax more slowly

Detonation Wave Simulation: Nonequilibrium Case

Nonequilibrium simulation demonstrates necessity for species-specific vibrational temperatures

- O₂ rapidly approaches quasi-steady-state via T-V exchange
- Induction length is comparable to equilibrium case

Temperature of detonation wave with vibrational nonequilibrium

2D Detonation Wave Simulation

 2D detonation wave simulated to assess vibrational nonequilibrium effects on detonation cell-pattern regularity

2D Detonation Wave Simulation

2D Detonation Wave Simulation

- The pressure history shows that modeling vibrational nonequilibrium significantly modifies detonation cell size
 - Delayed relaxation of H₂ plays a critical role in this process
 - In both cases, detonation cells are unstable

Blast Wave/Detonation Analogy

- Can blast waves with appropriate conditions used to understand mixing in detonations?
 - Easier experiment to do
 - Access to better laser diagnostic tools

Numerical study

- Conduct blast wave and detonation studies
- Identify mixing parameters

Blast wave conditions

Detonation conditions

3 Jet mixing comparison : blast wave/detonation

- Premixed H₂-O₂-Ar at 298K, 6670Pa and pure H₂ injectors
- Conserved properties : ρ_{jet}/ρ_2 and u_{jet}/u_2

Preliminary Mixing Metrics

- Scalar variance seems to decay in a similar manner
 - Density change the primary driver for enhanced mixing
- Post-wave mixing is driven only by decaying turbulence
 - Similar for both blast waves and detonations

Multi-Injector Configurations

- RDEs employ discrete injectors
 - Premixed or non-premixed
- In non-premixed injectors
 - Level of mixing can control detonation propagation
- How does injector mixing affect detonations?
 - Influence of small-scale mixing
 - Large scale impact
 - Distance between injectors
- Goal: Develop a canonical linear RDE setup for studying mixing effects

Numerical Study of Multi-injector Configurations

- For all simulations
 - Injection zone Lj = 10cm
 - Fuel mass flow rate Fj

• Variables

- Nj = number of injectors
- Dj = injectors diameter
- dXj = distance between injectors centerline
- Mj = injector exit Mach number

Configuration	Nj	Dj [mm]	dXj [Dj]	Mj
S	24	I.63	2.67	0.83
М	16	2.00	3.33	0.83
L	12	2.55	3.56	0.68
XL	8	3.55	4.03	0.53

Configuration S

- Isocontours of
 - ➡ H2 = 0.1
 - → T = 800K (black)
 - → log(|q|) = 9.5
- Colored by temperature

Configuration L

- Isocontours of
 - H2 mass fraction of 0.1
 - Temp. of 800K (black)
 - → log(|q|) = 9.5
 - Q-criterion
- Colored by temperature

Post-detonation Explosions

Shock wave interactions

- Regular high-pressure spots
- Creates regular postdetonation explosions
- Frequency is independent of the injector configuration
 - Independent of ambient conditions
 - [To be discussed next]

• Simulations so far

- Consider first passage of detonation wave
- Cold oxidizer as ambient condition

• RDE conditions

- Some pre-burnt mixture from prior detonations will be present
- How does ambient composition affect detonations?
 - Can there be pre-ignition and loss of efficiency?
Variation of downstream mixture

- Case I represents the first passage of the detonation
 - Clean Ar-O2-H2 mixture
 - Low temperature and pressure
- Case II represents a second passage of the detonation
 - Partially burnt Ar-H2O-O2-H2 mixture
 - Higher temperature and pressure

Configuration	P _{jet} /P _{ambient} (Pa)	T _{jet} (K)	T _{ambient}	Ambient composition
Case I	6670	298	298	O2 / Ar (1/7)
Case II	33350	298	2200	H2O / O2 / Ar (1/2/14)

Integrated Fuel Consumption and Heat Release

- Initial indication is that ambient conditions do not significantly affect detonation process
 - Mass consumption rates are unaltered
 - Additional conditional statistics being analyzed currently

Front-tracking and Induction Length

- Pressure jump used to identify detonation location
 - Normal constructed from surface data
- Mass fraction data extracted along the normal

Detonation Velocity Variation

Induction Length

Μ

L

Conditional Scalar Plots

- Conditional plots are useful in determining flame structure
 - Obtained on the normal vector

Outlook for Year 2&3

• Current progress

- Basic physics studies are close to completion
- Next step is to extract combustion models based on DNS data
- Year 2 Full scale simulations
 - Move to complex geometries and full-scale RDE simulations
 - OpenFOAM with AMR chosen as solver base
- Year 3 Optimization using inverse design
 - Inverse design solver is being constructed

