Materials Issues for Advanced Supercritical CO₂ Cycles and High Efficiency Gas Turbines

> B. A. Pint Corrosion Science & Technology Group Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge, TN 37831-6156

Research sponsored by DOE, Office of Fossil Energy Turbine Program (P. Burke, project manager)

Acknowledgments

TBC Task leaders:J. A. Haynes - coating procurementM. J. Lance - characterization (PSLS)S. Sampath, Stonybrook U. - processing

G. Garner, M. Stephens - oxidation experiments

sCO₂: Jim Keiser - autoclave design Mike Howell - construction and operations Robert Brese - UTenn PhD student
T. Lowe - characterization; T. Jordan - metallography
D. W. Coffey - TEM specimen preparation, FIB
D. Leonard - EPMA

Superalloys: Howmet, Siemens, Capstone Turbines Alloys: Haynes, Special Metals, ATI, Sumitomo, Sandvik... Research sponsored by: U. S. Department of Energy, Office of Coal and Power R&D, Office of Fossil Energy

Looking for coating solutions

New environments (higher H₂O, CO₂, SO₂)

#1 More durable coatings will benefit IGCC and NGCC #2 Focus on alumina scale as "weak link" Coatings for Syngas-H₂ Turbines Focus on thermally sprayed coatings Land-based turbine drivers: first cost drives sales temperature/efficiency (not with cheap gas) hot corrosion in blade root (want higher Cr)

"de-evolution"

Moving towards coating more realistic substrates

FY10-FY14: typical disks/coupons

B. A. Pint, K. A. Unocic and J. A. Haynes, "The Effect of Environment on TBC Lifetime," J. Eng. Gas Turb. & Power, 138 (8) (2016) 082102.

Turbo Expo 2015 Best Paper award Manufacturing Materials & Metallurgy Committee

Some things we did not plan to study Like the need for "good" roughness

PSLS: Alumina residual stress without a top coating is less meaningful

1 x 100h cycles

10 x 100h cycles

HVOF MCrAIYHfSi/APS YSZ on 1483 in 50%H₂O

Environment did not affect lifetime with 100-h cycles and thin bond coating

Five samples per group with 1483 substrate 1100°C, 100-h cycles Air with 10% H_2O showed longest lifetime!

Al diffusion limits 100 h cycle life Especially interdiffusion with 3%Al 1483

If interdiffusion limits life, does environment matter? Could other bond coatings do better?

Last group questioned whether coupons were a good method

Bars 1-2: single vs. CTSR double layer YSZ Bars 2-3: HVOF vs. VPS NiCoCrAlYHfSi Bars 3-4: VPS YHfSi vs. YHf (effect of Si) Bars 3-5: VPS YHfSi vs. YHfSiTiB (effect of Ti,B) No effect of four parameters studied

I thought it would be easy to change to rod specimens

FY15: coat and test rod specimens First step in moving towards commercialization e.g. industrial partner, burner rig testing

Rod lifetimes were much lower than previous results

Rods: only single specimens (average for 5 disks)

Lower exposure temperatures were used to get long lifetimes

900° and 1000°C to support modeling effort 1150°C: mistakenly thought lifetime would be high

Stonybrook has worked to optimize coatings on rods

Unfortunately, Phase 2 coatings did not perform better than Phase 1

Concern about low surface roughness of NiCoCrAIYHfSi

More promising results with APS flash coating on top of HVOF bond coating

APS NiCoCrAlYHfSi ~170 μ m layer Comparison of bond coating roughness is in progress

$Gd_2Zr_2O_7$ layer appears to be spalling

APS NiCoCrAlYHfSi ~170 μ m layer Comparison of bond coating roughness is in progress

FY16 goal is to study effect of curvature on oxide growth

Basic: 247 rod with concave side Complex: 718 "blade" by laser additive collaboration with Meyer Tool

Part 1: TBC Summary

Moving away from flat coupon specimens

2015 goals

coating 12.5mm diameter rod specimens (247)
low coating lifetime in 100-h cycles at 1100°C
5,000h exposure at 1000°C without failure
Switch to lower porosity YSZ top coatings
No significant change in lifetime
Promising results adding flash APS bond coating
Perhaps HVOF roughness not optimized

2016 goals

coating specimen with concave & convex sides coating optimization ongoing at Stonybrook substrates (simple and "blade") ready to coat

Part 2: Why use supercritical CO₂?

Potential supercritical CO₂ (sCO₂) advantages:

- no phase changes
- high efficiency
- more compact turbine
- short heat up
- less complex
- lower cost (?)

Direct- and indirect-fired sCO_2 Brayton cycles for:

- fossil energy (coal or natural gas)
- concentrated solar power
- nuclear (paired with sodium for safety)
- waste heat recovery/bottoming cycle

Many possible applications

Direct-fired system of special interest

Closed loop of relatively pure CO₂ - primary HX (>700°C) - recuperators (<600°C) Also, waste heat recovery, bottoming cycle for Fossil

Direct-fired (e.g. Allam cycle by Netpower) offers the promise of clean fossil energy:

In: natural gas $+ O_2$

Impurities: ~10%H₂O ~1%O₂, CH₄?, SO₂?

Out: CO₂ for EOR (enhanced oil recovery)

Different temperature targets

- Uncertainty about ranges for sCO₂ applications
- Fossil energy interest for power generation coal/natural gas: replace steam with closed cycle
- Direct-fired system may have very high T's: 1150°C combustor 750°C/300 bar turbine exit
- Indirect-fired: Primary HX operating at higher T

Materials for sCO₂ ~ A-USC steam

Temperatures (600°-750+°C) and pressures: challenge for strength limited number of materials available ! Adv. Ultra-supercritical (steam) same T range

Limited materials choices:

- capability
- ASME Boiler & Pressure Vessel Code:

Materials are key to: reliability availability maintainability

Oxygen levels similar in steam/CO₂ Factsage calculations: $CO_2 <-> 1/2O_2 + CO$

Similar pO_2 levels in steam & CO_2 , higher at 200bar All oxides of interest are stable

Why worry about 740/282? 5-10kh at 800°C still form thin reaction product in air

Gas only: C activity (a_c) relatively low, favors oxidation McCoy 1965: Inconel 600 and 18Cr-8Ni steel internally carburized in <u>1bar</u> CO₂ High a_c predicted - what about NiCr in sCO₂ + 1%H₂O?

Maybe we should be worried

Year 1 results from concentrated solar power study

500

Laboratory simulation of CSP duty cycle (700°C, 1 bar)

Tube creep rupture testing in supercritical CO₂

Air

sCO₂

Fe-base Sanicro 25 showed accelerated mass gain (Fe₂O₃) after ~1500 h in 10-h cycles in industrial grade CO₂ $R^{2}=0.97$ $R^{2}=0.97$ $R^{2}=0.95$ $R^{2}=0.95$

LMP = T(in K) (20 + log(time in h)) Ni-base 740H showed decreased creep rupture lifetime at 750°C at longest exposure time in sCO₂ compared to high pressure air

Relatively little prior sCO₂ work Especially at >650°C and >200 bar

Several groups active in the past 10 years U. Wisconsin group has published the most results Temperature/pressure limited by autoclave design

ORNL sCO₂ rig finished in 2014

- ORNL design team: 100+ years of experience
- Haynes 282 autoclave 152mm (6") dia. 1ml/min flow

ORNL sCO₂ rig:

10

20

30

40

50

60 MPa

Range of alloys exposed Narrowing scope as project progresses

Several testing options

High temperature exposure in controlled gas environment

automated cyclic rigs

3-zone tube furnace

282 autoclave

1 bar 500°-1200°C 0.1-24 h cycles 1 bar 500°-1200°C 100-500 h cycles

300 bar 200°-800°C 500 h cycles Want to study sCO₂ impurity effects Goal: study effect of H₂O & O₂ on sCO₂ corrosion BUT, we can't pump impurities into sCO₂ gas AND can't monitor H₂O or O₂ level at pressure (1) 1 bar dry air,CO₂(99.995%),CO₂+0.15%O₂,CO₂+10%H₂O 2014-2015 results

- (2) Constructing rig for 300 bar/750°C testing Pumping system and detector being built
- (3) 1 & 300 bar: industrial vs. research grade CO₂ Just starting experiments
- (4) 1 & 25 bar CO_2 vs. CO_2 +H₂O vs. +SO₂? Test matrix in progress

New system under construction

Laser-based system to detect O_2 and H_2O in CO_2 at pressure (200-300 bar)

RG vs. IG CO₂: minor differences Focus on 750°C: 500 h results

1 sample of each in first RG test Multiple samples in IG test for better statistics

Industrial grade: ≤ 50 ppm H₂O and ≤ 32 ppm O₂ Research grade: < 5 ppm H₂O and < 5 ppm hydrocarbons

Recent results in 1 & 25 bar

Three specimens of each alloy per condition

Second 800°C experiment finished Monday

Summary: sCO₂ project

Several experiments planned to study H_2O and O_2 effects in supercritical CO_2 , need a system that:

- can pump controlled impurity levels
- detect levels entering and leaving autoclave to study conditions relevant to direct-fired cycles

Additional experiments:

- (1) comparing industrial and research grade CO_2
- 1 and 300 bar
- collaboration with SunShot project
- (2) comparing 1 & 25 bar CO_2 & $CO_2+10\%H_2O$
- thin oxides formed on higher-alloyed materials
- no clear effect of impurities from this data

backup slides

Ni-base alloys: thin scales

All thin Cr-rich or Al-rich scales in 20 MPa sCO₂

Standardized coating procedures

16mm disks: superalloy substrates (all at.%): X4: 13.0Al 1.2Ti 6.4Ćr 0.9Re 0.03Hf 17pmaS 1483: **7.3Al 4.9Ti 13.6Cr** 0Re <0.001Hf <3ppmaS 247: 12.6Al 1.3Ti 9.7Cr 0Re 0.47Hf <3ppmaS

High Velocity Oxygen Fuel (HVOF) bond coating: Ni-18Co-16Cr-23Al-0.4Y-0.07Hf-0.65Si

Roughness: final coarse powder spray APS top coating: ZrO_2 - Y_2O_3 (1 side) Oxidation: 1-h and 100-hcycles

16mm diameter coupon

900° and 1100°C: air + 10% H₂O

Characterization:

Metallographic cross-sections SEM/EDS/EBSD EPMA (WDS) PSLS, 3D LM FIB/TEM

3D image + PSLS: maps & histograms 1483: 1100°C, dry air, 1h cycles

3D Light microscopy (Keyence)

Photo-Stimulated Luminescence Spectroscopy: mean stress

PSLS: total R-line area

Thicker bond coating appeared to eliminate substrate effect

3 batches of HVOF NiCoCrAlYHfSi coatings

Batch 2 - saw lower lifetime for 1483 substrates Batch 3 - no substrate effect observed

2015 focus areas

 Use CTSR/ORNL experience for best TBC
 Get away from testing flat coupons Cranfield/Jülich coat more complex shapes

~4 specimens from each rod/tube: 100h cycles

- measure lifetime, alumina stress...

Optimize coating process for rod (CTSR)

Some things we did not plan to study Like thick bond coating covered substrate effect

1100°C average lifetime of 3 similarly coated specimens 1483 had shorter lifetime only with thin coating

Initial stress measurements One 100-h cycle at 1100°C in air+10%H₂O

Lower mode stress in APS rod specimen after 1 cycle

What is effect of H₂O at 900°C? 500-h cycles in wet air and laboratory air

Slight change in rate constants with H₂O Stop specimens at 5,000h for metallography

- compare change in oxide thickness

282 deeper Cr depletion than 740

EPMA depth profiles beneath scale at 750°C

740: 49Ni-24.6Cr-20Co-0.5Mo-1.3Al-1.5Ti

Steels exposed at 400°-600°C 500h exposures in 20 MPa CO₂

Industry interested in where low-cost alloys can be used

Little effect of pressure observed

500h exposures at 750°C Core group of 12 alloys evaluated

Typical Fe-rich oxide on Gr.91

However, inner/outer ratio appears to change with P Outer Fe_2O_3/Fe_3O_4 layer Inner $(Fe,Cr)_3O_4$ layer Grade 91: Fe-9Cr-1Mo

Some thin-protective Cr-rich scale at 1bar

light microscopy of polished cross-sections

750°C: initial tensile experiments showed little effect of sCO₂

25mm tensile bars exposed at each condition Tensile test at room temperature: 10⁻³/s strain rate

