

Reliable Electricity Based on ELectrochemical Systems (REBELS)

What we learned after a year and a half

Paul Albertus, Grigorii Soloveichik, John Tuttle, Scott Litzelman, Mark Pouy

Advanced Research Projects Agency - Energy

17th Annual SOFC Project Review Meeting July 19, 2016

A tribute to John Lemmon, the REBELS founder

Electrochemical power generation will never compete economically with existing technologies such as natural gas combined cycle

New electrochemical power generation devices will <u>revolutionize</u> how we convert energy & be cost-competitive

Talk outline

- Reminder of the REBELS program
 - High-level program motivation
 - REBELS vision and program overview
- Program categories with technical highlights
 - Category 1: Intermediate temperature fuel cells
 - Category 2: With integrated storage
 - Category 3: With integrated fuel production
- Summary, and open questions for the REBELS program

The Value of Distributed Generation (DG)

Distributed Generation Markets – Impact of Future Fuel Cell Applications, DNV KEMA report prepared for ARPA-E (2013); Cost-Effectiveness of Distributed Generation Technologies, Iton, submitted to PG&E, 2011

Adapted from http://www.caiso.com/Documents/DR-EERoadmap.pdf

Battery performance in regulation

a regulation command signal

A fossil plant struggles to follow a regulation command signal

Electrochemistry is fast (<<1 sec) and offers value to the grid.

Flaring and venting of stranded NG

- 5.3 trillion cubic feet of natural gas flared annually
 - 5 quadrillion BTUs
 - 25% US electricity production

- Pneumatic devices use NG pressure to drive pumps, regulators, and valves & then vent
- > 20 million tons CO₂ eq. annually: 20-35% of production-related emissions

Talk outline

- Reminder of the REBELS program
 - High-level program motivation
 - REBELS vision and program overview
- Program categories, and technical highlights
 - Category 1: Intermediate temperature fuel cells
 - Category 2: With integrated storage
 - Category 3: With integrated fuel production
- Summary, and open questions for the REBELS program

Based only on direct manufacturing costs

CHANGING WHAT'S POSSIBLE

Intermediate temperature fuel cells (ITFCs)

REBELS program focus is 200 to 500°C

	Compared to Low T	Compared to High T
Strengths	 Potentially lower PGM Less fuel processing Less cooling required 	 Cheaper interconnects & seals Fewer CTE problems Greater ability to ramp/cycle
Weaknesses	 Longer start-up Capability for dynamic operation less clear 	 Higher resistance & overpotentials Fuel reforming issues

REBELS focus

REBELS Program Categories

The 200 to 500°C temperature range will enable new chemistries, materials, and functionalities:

ITFC

Efficient, reliable small power systems

- Entry markets valuing reliability, including DoD
- Low cost CHP: > 80% efficiency, fewer CO₂ emissions

Fuel cell with integrated battery mode for faster response to transients

Fuel cell with ability to convert natural gas to liquid fuels or valuable products

Talk outline

- Reminder of the REBELS program
 - High-level program motivation
 - REBELS vision and program overview
- Program categories, and technical highlights
 - Category 1: Intermediate temperature fuel cells
 - Category 2: With integrated storage
 - Category 3: With integrated fuel production
- Summary, and open questions for the REBELS program

Proton vs. oxygen ion conductors

	Proton conductor	Oxygen ion conductor
Activation energy (eV)	0.2 - 0.4	0.7 - 0.9
System impact	 Water formed on cathode side, need to pipe to anode to humidify Removing protons shifts equilibrium away from coke formation 	 Water formed on anode side; can be self-humidifying Delivers O₂ to mitigate coking Dilutes the fuel

Methane reforming at 500°C risks coking

D. Matuszak

Internal reforming pros and cons	Pros	 Reduce capex, esp. for smaller systems Endothermic reaction helps thermal management
	Cons	 Must carefully manage steam:fuel ratio Need NG cleanup operations Long-term degradation?

Cat. 1: CSM runs at 500°C on several fuels

Stack repeat unit

Peak power density at 500 °C No pre-reforming of the fuel

Voltage stability shown for hundreds to thousands of hours on wet methane

Data courtesy R. O'Hayre, Colorado School of Mines

Cat. 1: CSM cost model shows benefits

Battelle: "Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) For APU Applications" (2014) Strategic Analysis, Inc: "Manufacturing cost analysis of stationary fuel cell systems" (2012)

Cat 1: Georgia Tech runs on dry methane at 500°C

Cross-section of anode made via freeze casting

Cat 1: Georgia Tech runs on dry methane at 500°C

Button cell: 500°C, 97%CH₄ / 3%H₂O, 5-10% fuel utilization

Data courtesy M. Liu, Georgia Tech

Cat 1: ORNL/UTK cut Pt by 4x in CDP electrode

State of the art: Pt is ORR catalyst and e^{-} conductor; low CsH_2PO_4 (CDP) surface area

This project: Pt is ORR catalyst, CNTs are e⁻ conductor, higher CDP surface area

Reminder: CsH_2PO_4 fuel cell runs at ~250°C

Cat 1: ORNL/UTK cut Pt by 4x in CDP electrode

Data courtesy T. Zawodzinski and A. Papandrew, ORNL/UTK

Talk outline

- Reminder of the REBELS program
 - High-level program motivation
 - REBELS vision and program overview
- Program categories, and technical highlights
 - Category 1: Intermediate temperature fuel cells
 - Category 2: With integrated storage
 - Category 3: With integrated fuel production
- Summary, and open questions for the REBELS program

Univ SC demonstrates charge storage bed

CHANGING WHAT'S POSSIBLE UNIVERSITY OF SOUTH CAROLINA, CACUMENTICS OF MARYLAND TEXAS A AUSTIN

Cat 2: Univ SC demonstrates charge storage bed

UNIVERSITY OF

Data courtesy K. Huang, Univ. of South Carolina

UNIVERSITY OF

SOUTHCAROLINA

30

The University of Texas at Austin

Cat. 2: UCLA shows electrode charge storage

Temperature 30°C, Pt loading in the anode 0.05 mg cm⁻², 0.4mg cm⁻² in the cathode Anode was supplied with 0.1L/min H_2 , the cathode was supplied with 0.1L/min O_2

Cat. 2: UCLA shows electrode charge storage

Electrochemical response

Talk outline

- Reminder of the REBELS program
 - High-level program motivation
 - REBELS vision and program overview
- Program categories, and technical highlights
 - Category 1: Intermediate temperature fuel cells
 - Category 2: With integrated storage
 - Category 3: With integrated fuel production
- Summary, and open questions for the REBELS program

Source: D. Hawkins, TransOcean, Global, Gas Flaring Reduction Conference, Paris Dec 13-15, 2006

Cat 3: ANL fuel cell performance on H₂ fuel

(Ni/BZY anode; ~10- μ m thick BCY electrolyte; Pt paste cathode)

Figure courtesy T. Krause, ANL

Cat 3: ANL tubular reactor performance

• Reaction: propane dehydrogenation, $C_3H_8 \rightarrow C_3H_6 + H_2$

Figures courtesy T. Krause, ANL

Talk outline

- Reminder of the REBELS program
 - High-level program motivation
 - REBELS vision and program overview
- Program categories, and technical highlights
 - Category 1: Intermediate temperature fuel cells
 - Category 2: With integrated storage
 - Category 3: With integrated fuel production
- Summary, and open questions for the REBELS program

Lessons from REBELS after 1.5 years

- Can run on methane without an external reformer at 500°C both with (CSM) and without (GT) a steam co-feed.
- Several teams have cells with <1 Ohm-cm² ASR.
- Novel fuel cell functionality that partly achieves Category 2 and 3 visions has been shown.
- Techno-economic analyses need more work to show tradeoffs (power, material costs, lifetime, functionality, etc.)

<u>Final goal:</u> technical data and TEA to define the benefits (if any!) of REBELS over competing technologies.

REBELS teams would benefit from NETL lessons learned.

ARPA-E Open Positions

Program Directors Tech-to-Market Advisors Fellows

Apply Online

• • • • •

. . . .

Program Directors and T2M Advisors

Program Directors and T2M advisors serve 3-year terms

ROLES & RESPONSIBILITIES - PD

- Perform technical deep dive soliciting input from multiple stakeholders
- Present & defend program concept in climate of constructive criticism
- Actively manage portfolio projects from merit reviews through project completion
- Develop milestones and work "hands-on" with awardees in value delivery
- Represent ARPA-E as a thought leader in the program area

ROLES & RESPONSIBILITIES – T2M

- Manage the Commercialization progress of project technologies
 - Manage project teams' T2M efforts through T2M Plans and jointly developed milestones
- Advise: support project teams with skills and knowledge to align technology with market needs
 - IP and competitor management
 - Value Chain and Market analysis
 - Product hypothesis
 - Economic analysis
 - Partner discovery and engagement

Fellows

ARPA-E semi-annually recruits new Fellows, who serve 2-year terms

ROLES & RESPONSIBILITIES

Identification of high-impact energy technologies

- Perform technical and economic analyses to identify high-impact energy technologies.
- Publish original research papers and reviews.

Active project advisement

- Actively advise & coach portfolio projects from merit reviews through project completion
- Extensive "hands-on" work with awardees.

Organizational support

- Review proposals for funding opportunities.
- Contribute to the strategic direction and vision of the agency.

ATTRIBUTES

- Ph.D. in science or engineering; strong analytical and communication skills; ability to work independently and across disciplines; leadership.
- A passion to change our energy future

Questions

.

.

42

EXTRA SLIDES

.

.

.

New(er) electrolytes for IT fuel cells

Not an exclusive list:

LT SOFCs

- Composite electrolytes with interfacial pathways
- Multilayer
 electrolytes

IT Proton Conductors

- Ba(Zr, Ce, Y)O₃
- Solid acid fuel cells
- Indium tin pyrophospate

Other Ionic Conductors

- HT alkaline
- HT phos acid
- LT molten carbonate

Thermodynamics of steam methane reforming

D. Matuszak

