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Motivation

 The U.S. Energy Information Administration (EIA) predicts global demand of energy 
will rise by 56 % from the year 2010 to 2040.

 Renewable energy and nuclear power are fastest growing energy sources.

 Yet, 80% of the world’s power is still generated from conventional sources.

 Conventional fossil fuel based power plants have low efficiency, high environmental 
impact.

 IGCC plants are better on both fronts.

 Hence, it makes sense to invest in research for improving performance of IGCC 

plants.
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IGCC Power Plant

Picture source: Wikipedia
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• More than 80 unit operations
• Over 200 streams



VIRTUAL SENSING IN IGCC PLANTS
 The process of estimating value of a variable through mathematical modeling.

 Eliminates need of placing direct physical means of measurement such as a sensor. 

 Two types – analytical and empirical

 Advantage - Economical and less-invasive.
 Appropriate choice for IGCC plant due to harsh operating conditions and hundreds 

of process variables.

 Disadvantage - lower measurement accuracy than actual sensing
 High measurement error gives rise to uncertainty in the system.

 Only variables that are expensive or difficult to measure directly are measured 
virtually.
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SENSOR NETWORK – WHY DO WE NEED IT?
 OBSERVABILITY

 Monitoring and controlling the process variables in real time.
 To maintain all process variables within a safe range of operation at all 

times.
 Ensures smooth, safe and reliable operation.

 EFFICIENCY
 Certain variables that directly impact efficiency should be close to 

target value.
o Gasifier temperature
o Steam to air ratio in gasifier
o Air to fuel ratio in gas turbine.

 If these variables are above or below their optimal values, the plant 
will run at a sub-optimal level.
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OBJECTIVES
 METHODOLOGY 

 Develop sensor deployment methodologies applicable to IGCC power plant 
systems.

 Incorporate measurement error (uncertainty) and non-linear nature of the 
system in the formulation and solution of the optimal sensor deployment 
problem. 

 ALGORITHM 
 Develop a new algorithmic framework that can improve the computational 

efficiency significantly.

 MULTI-OBJECTIVE APPROACH
 Develop multi-objective optimal sensor deployment algorithms to provide trade-

off designs between various objectives – maximizing observability & maximizing 
efficiency.
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PROBLEM STATEMENT

 Decision variables - number 
& location of sensors in the 
plant and the type of 
sensors.

 Objective functions –
maximizing observability 
(using FI), maximizing 
efficiency, minimizing cost.

 Constraint – budget, mass & 
energy balances.

Multi-
objective

• Simultaneous 
achievement of 
multiple objectives

Stochastic

• Uncertainty in 
process variables 
due to system and 
measurement noise.

Non-linear

• Equations 
governing the 
physical processes 
in the IGCC power 
plant are non-
linear.

Mixed
Integer

• Presence of integer 
and binary integer 
decision variables.

9



Variables & Control
 24 intermediate variables selected 

 They have effect on output variables and plant performance.
 Sensors are to be installed in these locations
 Selected based upon experience 
 Placing actual sensors reduce measurement error.
 Place sensors strategically to gain as accurate information as 

possible for all these process variables.

Without sensor – measurement error is ± 20%
With sensor

 Low cost sensors, error = ± 5%
 Medium cost sensors, error = ± 2.5%
 High cost sensors, error = ± 1%
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• Specify uncertainties in key
input parameters in terms of
probability distributions.

• Sample the distribution of the
specified parameter in an
iterative fashion.

• The model is evaluated for
each of these sample points 
to determine the probabilistic 
value of objective function& 
constraints.

• Derivative estimation through  
perturbation analysis

GENERALIZED STOCHASTIC PROGRAMMING FRAMEWORK13

Ref: BONUS Algorithm for Large Scale Stochastic Non-linear 
Stochastic Algorithm Problems, U. Diwekar, A., David, 
Springer 2013



ALGORITHMIC FRAMEWORK 
BASED ON BONUS

B- Better 
O- Optimization for 
N- Non-Linear 
U- Uncertain 
S- Systems
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STOCHASTIC PROGRAMMING FRAMEWORK

Optimizer
(outer approx. of 
MINLP using GAMS)

Reweighting
(using MATLAB)

Ref: BONUS Algorithm for 
Large Scale Stochastic 
Non-linear Stochastic 
Algorithm Problems, U. 
Diwekar, A., David, 
Springer 2013

Computational time for 
800 samples reduced 
from 18 hours (ASPEN) to 
less than a minute 
(BONUS).

Computational time for 
800 samples reduced 
from 18 hours (ASPEN) to 
less than a minute 
(BONUS).



BONUS & Reweighting16

Ref: BONUS Algorithm for Large Scale Stochastic Non-linear Stochastic 
Algorithm Problems, U. Diwekar, A., David, Springer 2013

• Initial uniform distributions (lower & 
upper bound) assumed for decision 
variables. 

• PDFs of Decision & uncertain 
variables form base distributions. 

• BONUS samples solution space of 
objective function using base 
distributions.

• As decision variables change, the 
distributions for the objective 
function &constraints also change.

• BONUS algorithm estimates 
objective function & constraints 
based on ratios of the probabilities 
for the current and the base 
distributions.

• Thus, BONUS avoids sample model 
runs in subsequent iterations.



MULTI-OBJECTIVE 
OPTIMIZATION
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Multi-objective approach

 Objectives: maximize fisher information, efficiency, minimize cost

 Constraint method, a posterior method for generating pareto set where

 The multi-objective problem is transformed into a series of single objective 
problems.

 Any single objective is optimized while the rest are converted into constraints 
with lower & upper bounds.

 Lower bound to cost corresponds to using no sensors, i.e., zero (0).

 Upper bound to cost corresponds to using high accuracy sensors for all 24 locations.
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STEPS IN OUR SOLUTION

 2-tier constraint method

 To derive only feasible solutions, Divide cost values into 10 bins 
between upper and lower bound.

 For each cost, solve single optimization problem to maximize 
efficiency and calculate the corresponding FI.

 Similarly, for each cost, solve single optimization problem to 
maximize FI and calculate the corresponding efficiency.
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STEPS (contd..)

 Derive upper & lower bounds of efficiency & FI & generate pay-off 
tables for each cost,
 For each pay-off table, select feasible values of efficiency in small 
increments and solve single optimization problems to find maximum FI 
for each of these values. 
Generate the complete pareto surface (trade-offs) by solving 
multiple single objective problems.
 Plot the complete pareto surface and analyze.
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MAXIMIZING FISHER INFORMATION

• Fisher information: 
a probabilistic 
nonlinear function

• Constraint on cost

• Stochastic Mixed 
integer nonlinear 
programming 
problem
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MAXIMIZING EFFICIENCY

 Second Objective – maximize 
expected value of plant 
thermal Efficiency

 Constraint – budget
 Efficiency depends upon only 

certain variables – coal feed 
rate, gas turbine electric 
power, steam turbine electric 
power etc.

 E = ௪௧ி∗ி∗ுை
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Mass & Energy Balances



Mass & Energy balance equations:

The mass balance equation is given by:
Where

Yi,in = mass concentration of content I in inlet flow
Min = inlet mass flow rate
Yi,out = mass concentration of content i in outlet flow
Mout = outlet mass flow rate
Ri = net production rate of i by chemical reactions.

The energy balance equation is given by:
Where

U = internal energy in block
Hi,in = enthalpy flow rate of content i in the inlet flow
Hj,out = enthalpy flow rate of content j in the outlet flow
Qk = heat flow
Pm = mechanical power.



RESULTS & DISCUSSIONS
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Pareto set using only High Accuracy Sensors25



Pareto set using Low, Medium & High Accuracy Sensors26



Low Cost – High efficiency27



Low Cost – High efficiency28



Low Cost – Low FI – High Efficiency29



High Cost – High Efficiency – low FI30



High Cost – High Efficiency – low FI31



High Cost – High efficiency – low FI32



High Cost – High efficiency – High FI33



High Cost – High efficiency – High FI34



High Cost – High efficiency – High FI35



Moderate Cost – High efficiency – High FI36



Moderate Cost – High efficiency – High FI37



Moderate Cost – High efficiency – High FI38



Sensor Locations – L, M, H sensors

Sensor Locations – only H sensors

Cost - $5275000, FI - 154.81, Efficiency - 0.4377

Cost - $5275000, FI – 144.04, Efficiency – 0.4456
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L- 10, M-3, H-8, Nil - 3

H-13, Nil - 11
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High Cost – High efficiency – High FI41



Moderate Cost – High efficiency – High FI42



INFERENCES

 Maximizing efficiency is cheaper than maximizing FI.

 Even if we are trying to maximize efficiency, a budget of $5.27 million is 
sufficient. 

 Even if we are trying to maximize both, a budget of $ 7.38 million is 
sufficient.
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SUMMARY

 Initial sample generated from ASPEN

 Off-line APSEN simulations for the fixed number of samples

 Algorithmic framework based on BONUS for single objective optimization

 Feasible solutions by fixing cost bins apriori

 2-tier constraint method for solving multi-objective optimization.

 Pareto surface generation for decision makers

 Analysis of pareto surface can help determine the solution for desired 
trade-off.
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KEY CONTRIBUTIONS

Objectives satisfied 

 Developed sensor deployment methodology which incorporates non-
linearity and uncertainty - a framework for virtual sensing and hybrid 
hardware and virtual sensing in power plants.

 Developed computationally efficient algorithm -significant reduction in the 
number of model runs to be solved for optimization and the number of 
samples for the uncertainty analysis 

 Obtained tradeoffs between multiple objectives.
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FUTURE WORK

 Comparison of stochastic approach to SND with dynamic simulation 
approach to determine which is more computationally efficient.

 Include other objective functions, e.g., CO2 capture efficiency.

 Application of this methodology to dynamic sensor problems.

 Extension of this methodology to other systems which have a black box 
model.
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