

Development of a CO₂ Chemical Sensor for Downhole CO₂ Monitoring in Carbon Sequestration

Ning Liu

April 19, 2016

Petroleum Recovery Research Center New Mexico Institute of Mining and Technology, Socorro, NM 87801 Phone: (575) 835-5739; Fax: (575) 835 6721; Email: ningliu@nmt.edu

Objectives:

to develop a downhole CO_2 sensor that can monitor CO_2 plume migration in carbon sequestration. The proposed downhole CO_2 sensor can resist high pressure, temperature, and high salinity.

Phase I – To develop a metal-oxide pH electrode with good stability and to understand different factors' effects on the performance of the electrode.

Phase II – To develop a downhole CO_2 sensor and determine sensor performance under high pressure and high salinity.

Phase III – To evaluate the CO_2 sensor's response in CO_2 /brine coreflooding tests, and to develop a data acquisition system for the developed CO_2 sensor.

Background

Schematic of CO₂ sequestration.

Schematic structure and picture of the fabricated $\rm CO_2$ sensor.

$CO_2(g) + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$

$$E = E^o + \frac{2.303RT}{F} \log[H^+]$$

$$E = E^{o} + 59.15 \log \frac{k}{[HCO_{3}^{-}]} + 59.15 \log[CO_{2}]$$

$$\Delta E = 59.15 \log[CO_2] + k$$

Previous work

. Micrograph of iridium oxide film prepared under 870° C and 5h: (a) overview of iridium wires before and after oxidation; (b) surface morphology of bare iridium wire; (c) surface morphology of iridium oxide; (d) Cross section of iridium oxide.

.

.

CO₂ sensor preparation

Schematic design and image of the downhole ${\rm CO}_2$ sensor.

. .

Task 4.0 (1 year) Evaluate the CO_2 sensor in CO_2 /brine coreflooding tests and develop a data acquisition system for the downhole CO_2 sensor.

> Subtask 4.1 Design and conduct CO_2 /brine coreflooding tests

Subtask 4.2 Develop a data acquisition system to convert the output of the sensor signal into digital data

Subtask 4.3 Final report

Schematic diagram of the coreflooding system

Picture of the coreflooding system

CO_2 sensor performance during CO_2 /brine the coreflooding test

Time (min.)

Iridium oxide electrode after high pressure tests

picture of IrOx electrode (a), before high pressure test; (b) after high pressure testing three times; (c) after five times.

Iridium oxide nanoparticles

UV-Vis spectra of heated and unheated 2 mM aqueous K_2IrCl_6 solutions at pH 13 and after acid condensation at pH 1; solutions prepared by hydrolysis and acid condensation.

Preparation of iridium oxide electrode by electrodeposition method

Schematic diagram of the electrodeposition cell of cyclic voltammetry instrumentation

SEM image of IrO₂ deposited on stainless steel.

pH response of the prepared electrodes

Reproducibility of the electrode fabrication

Performance of the electrode under high pressure test

pH response of the electrode after high pressure tests (2,000 psi, 5 cycle tests)

- A downhole CO₂ sensor was constructed. The downhole CO₂ sensor could measure the dissolved CO₂ concentration at reservoir conditions. CO₂/brine coreflooding system was construct and the CO₂ sensor was tested in different coreflooding tests. The sensor output potential was observed to increase after CO₂ was injected into the core.
- The CO₂ sensor could be recovered by waterflooding after CO₂/brine flushed the core.
- An electrodeposition approach to prepare iridium oxide electrode was developed. The iridium oxide electrode thus prepared displayed excellent pH sensitivity, obtaining super-Nernstian behavior with pH sensitivity value of -72.6 mV/pH.
- The performance of the iridium oxide electrode was tested under high pressure. The results indicated that the prepared electrode displayed excellent pressure resist.

Develop a data acquisition system to convert the output of the sensor signal into digital data.

> Techno-economic Assessment/Final report

Acknowledgement

We gratefully acknowledge the support of:

- Department of Energy: DE-FE0009878,
- Petroleum Recovery Research Center at New Mexico Tech.