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Outline

• Long term CO2 injection integrity monitoring – problem statement

• Main objective to demonstrate and develop a novel, robust, down hole 
sensing technology for in-situ monitoring

• To reach the objective we developed and verified the robust ceramic 
coaxial cable sensors at elevated temperature and pressure

– Strain
– Temperature
– Pressure 

• Evaluated a bench scale wellbore system

• Summary



Potential leakage pathways of CO2

Matrix
 Capillary entry pressure
 Seal permeability 
 Pressure seals
 High permeability zones

Structural
 Flow on  faults 
 Flow on  fractures 
 Flow between permeable
zones due to juxtapositions

Geomechanics
 Hydraulic fracturing
 Creation of shear fractures
 Earth quake release



Wellbore Leakage
1. Incomplete annular cementing job, 

doesn’t reach seal layer
2. Lack of cement plug or permanent packer
3. Failure of the casing by burst or collapse
4. Poor bonding caused by mudcake
5. Channeling in the cement
6. Primary permeability in cement sheath or 

cement plug

7. De-bonding due to tensile stress on casing-
cement-formation boundaries

8. Fractures in cement and formation
9. Chemical dissolution and carbonation of 

cement
10. Wear or corrosion of the casing

PRIMARY

SECONDARY



Long term CO2 injection integrity monitoring 
– problem statement

• Background: 
– Subsurface geologic formations offer a potential location for long-

term storage of CO2. 
– Achieve the goal to account for 99% of the injected CO2 requires 

advanced monitoring technology to optimize the injection 
processes and forecast the fate of the injected CO2

• Status: 
– Due to the complexity, no single data type is sufficient by itself; 

different monitoring and characterization approaches are deemed 
to be necessary.

– In situ down-hole monitoring of state parameters (e.g., pressure, 
temperature, etc.) provides critical and direct data points to validate 
the models, optimize the injection scheme, detect leakage and 
track the plume. 

– Current down-hole sensors are insufficient to meet the reliability 
and cost requirements. 
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The goal is to develop a monitoring system combined 
for the wellbore and the reservoir monitoring

Source: Wabamun CO2 sequestration project - WASP

Temperature
Strain, 

Temperature

Temperature,Temperature,
Pressure
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CC-FPI Sensor Principle

1Γ 2Γ

(1 2 ) 1 , 1,2,...
4valleys
N cf N

L n
+= ⋅ =

• Temperature sensing
– Dielectric thermal effect
– Thermal expansion

• Strain sensing
– Length elongation
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Distributed strain sensors on a cantilever
• A cable with multiple FPIs is bonded on a cantilever 

Gate/filter the reflectors Strain is related to spectrum shift



Strain distribution on a cantilever

ߝ = ܫܧݖܯ
(ݔ)ܯ = ݔ)ܲ − bending(ܮ moment

bending strain

strain distribution of
nine sections on the
cantilever with three
end load

• Press one end and fix the other end





Real time distributed strain monitoring
Bend at one end

Press in the middle



Beam shape strain sensor
• A pair of distributed strain sensors are implemented to 

monitor strains at y and z direction



Displacement-Strain-Transformation 
• Displacement is an integral of distributed strain
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Coaxial cable torsion sensor 

Multiple-reflectors to form 
FPIs in one cable

The fixed reflectors are 
fixed on the structure

The torsion is related 
with measured strain
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A single torsion sensor test
Fix at on end, rotate 
the other end

1.83 MHz/(rad/m)



Distributed torsion sensor test
• The central sensor is under torque, while the other two is 

relaxed

Torsion response in central sensor Torsion distribution of three sensors

Small cross-talk



CCFPI Sensor design development

• Half-way holes
– Unstable 

structure
– Package issue 

• Crimp ferrule
– Easy fabrication
– No further 

packaging needed

1Γ 2Γ

1Γ 2Γ



CCFPI Strain Sensors 
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Temperature cross talk
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EM wave input

EM wave output



Coaxial Cable Strain Sensor
• Strain sensor is sensitive to temperature
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Temperature 
induced

Strain 
induced
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 Hollow coaxial cable to minimize temperature cross-talk: 
αTCK = 0



Strain Response
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Temperature cross talk is reduced to 20 ppm/℃, which is very close to the 
theoretical minimum of 16.6 ppm/℃ (limited by the CTE of copper)
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Coaxial Cable Temperature Sensor
• Reflectors are generated by crimped copper rings

1Γ 2Γ

Coaxial Cable FPI

Squeezed copper crimp rings Outer Conductor

Inner Conductor Dielectric Layer

EM wave input

EM wave output



Temperature Response
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• Repeatable linear temperature response with 
high sensitivity



Temperature response

• Test setup uniformity 
– ±1.9 ℃ @ 100℃

• Deviation of four tests
– ±3 ℃

40 50 60 70 80 90 100 110
4.864

4.866

4.868

4.87

4.872

4.874

4.876

4.878

4.88

4.882

valley near4.8643GHz

x axial

fre
q(

G
H

z)

4.84 4.85 4.86 4.87 4.88 4.89 4.9 4.91

2.5

3

3.5

4

4.5

5

x 10
-3 S11 spectra

freq(GHz)

S1
1(

a.
u.

)

 

 

40
50
60
70
80
90
100
110

244 kHz/ºC

2
N TCK

CTE
N

f T
f

α αΔ  = + Δ 
 

Physical 
expansion 

Dielectric

 Both materials and lengths will vary with temperature



Temperature response

• Temperature sensitivity
– 18 ppm/ºC

• CTE of copper
– 16.6 ppm/ºC
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Pressure effects test set up

3. Methodology

31

(a) VNA;

(b) pump;

(c) data 
acquisition;

(d) HPHT cell;

(e) temperature 
controller.



Pressure response on temperature sensor at 
constant temperature 
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40 °C 40 °C

80 °C 80 °C



Pressure effect on Temperature sensor
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STATISTICAL RESULTS
Source S.S. F Ratio Prob>F
Temp 8.7e+14 2100 <0.0001*
Pres 3.1e+14 751 <0.0001*

Temp*Pres 1.1e+13 28.9 <0.0001*
Temp*Temp 7.8e+12 19.0 <0.0007*
Pres*Pres 6.0e+12 14.5 <0.0019*∆F= 817 × 10ଷ + 10.43 × 10 × T − 67.542.5 − 6.24 × 10 × P − 507.35492.65 − 2.45 × 10× T − 67.542.5 × P − 507.4492.7 + 1.86 × 10 × T − 67.542.5 × T − 67.542.5 + 1.62 × 10× P − 507.4492.7 × P − 507.4492.7



Modified temperature sensor 
minimized pressure effect

34

STATISTICAL RESULTS
Source S.S. F Ratio Prob>F
Temp 3.23e+14 178 <0.0001*
Pres 7.52e+11 0.413 0.5307

Temp*Pres 4.85e+10 0.027 0.8727
Temp*Temp 1.15e+12 0.635 0.4390
Pres*Pres 3.78e+10 0.021 0.8874

ܨ∆ = −6.262 × 10 − 6.362 × 10 ×்ି.ହସଶ.ହ
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Microwave pressure sensor
• Principle: reservoir and capillary for amplification similar 

to the liquid in glass thermometer
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Temperature cross-talk reduction
• The pressure sensor is also sensitive to temperature
• Fill low CTE material to minimize liquid volume

liquid
T

reservoir

V
Xtalk

V
∝

Reservoir volume: 
the same

Pressure sensitivity: the 
same

Liquid volume: 
reduced

Temperature 
sensitivity: small



Liquid column interrogation
• Use microwave to measure the length of 

the liquid column in capillary

 Microwave travels slower in liquid than air
 The electrical length between two reflectors is liquid column 

dependent

L lεΔ = Δ Δ
f L
f L

Δ Δ= −

Spectrum shift with electrical 
length variation

1Γ 2Γ

Liquid columnElectrical length



Pressure sensor test setup

Dead weight 
pressure tester

Testing 
chamber

VNA
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Proposed coaxial cable sensing system 
deployment method



Casing deformation modes
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Axial and Radial Bending Ovalization



Wrapped sensor response to a specific 
deformation mode
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3.2 Casing imaging system
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Deformation Mode Pipe OD
(inch)

Sensor Length
(inch)

Wrapping Angle
(degree)

Axial Compression/
Radial Expansion 4.5 (PVC) 4 23

Bending
4 (PVC) 3 55

6 (Steel) 3 35

Ovalization
6 (PVC) 3 35

6 (Steel) 3 35



Axial compression test set up
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Bending test setup
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Ovalization test set up
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PVC pipe axial strain results
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PVC pipe bending results
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Observations from pipe testing
• A prototype of the distributed coaxial cable casing imager has 

been developed and tested on both PVC and steel pipes

• The casing imager has good performance in casing axial 
compression monitoring for strain up to 1%

• There is a good match between theoretical and measured 
bending angle for bending angle up to 4 degrees

• The measured pipe ovalization follows the theoretical curve for 
pipe ovality up to 3%

• Pipe original roundness and straightness has a strong influence 
on bending and ovalization results

• The pre-stressing and epoxy properties influenced 
measurements especially when deployed on the steel pipe
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Summary

• Distributed strain and temperature rigid coaxial sensors for 
down hole conditions have been developed and are 
verified at down-hole conditions

• The pressure sensor is developed and validated

• Distributed sensing concept using coaxial cable is proven

• A bench scale prototype with distributed coaxial cable 
sensors was wrapped with an angle to a pipe and 
replicated the imposed strain behaviour
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