

Development of a Ceramic Coaxial Cable Sensor-Based System for Long-Term Down Hole CO2 Sequestration Monitoring

Runar Nygaard² Hai Xiao¹ Xiaoming He²

R

S

E

DE-FE0009843

Title

Robust Ceramic Coaxial Cable Down-Hole Sensors for Long-Term In Situ Monitoring of Geologic CO2 Injection and Storage

Pl's

Runar Nygaard, (S&T) Hai Xiao (Clemson University) Xiaoming He *(S&T)*

Program Manager

Barbara Carney

Outline

- Long term CO2 injection integrity monitoring problem statement
- Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring
- To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure
 - Strain
 - Temperature
 - Pressure
- Evaluated a bench scale wellbore system
- Summary

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Potential leakage pathways of CO₂

CO₂ Injection

Reactive Fault

Abandoned Well

Matrix

- Capillary entry pressure
- Seal permeability
- Pressure seals
- High permeability zones

Structural

- Flow on faults
- Flow on fractures
- Flow between permeable zones due to juxtapositions

Geomechanics

- Hydraulic fracturing
- Creation of shear fractures
- Earth quake release

Wellbore Leakage

PRIMARY

- 1. Incomplete annular cementing job, doesn't reach seal layer
- 2. Lack of cement plug or permanent packer
- 3. Failure of the casing by burst or collapse
- 4. Poor bonding caused by mudcake
- 5. Channeling in the cement
- 6. Primary permeability in cement sheath or cement plug

SECONDARY

- 7. De-bonding due to tensile stress on casingcement-formation boundaries
- 8. Fractures in cement and formation
- 9. Chemical dissolution and carbonation of cement
- 10. Wear or corrosion of the casing

Long term CO₂ injection integrity monitoring – problem statement

• Background:

- Subsurface geologic formations offer a potential location for longterm storage of CO2.
- Achieve the goal to account for 99% of the injected CO2 requires advanced monitoring technology to optimize the injection processes and forecast the fate of the injected CO2
- Status:
 - Due to the complexity, no single data type is sufficient by itself; different monitoring and characterization approaches are deemed to be necessary.
 - In situ down-hole monitoring of state parameters (e.g., pressure, temperature, etc.) provides critical and direct data points to validate the models, optimize the injection scheme, detect leakage and track the plume.
 - Current down-hole sensors are insufficient to meet the reliability and cost requirements.

Outline

- Long term CO2 injection integrity monitoring problem statement
- Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring
- To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure
 - Strain
 - Temperature
 - Pressure
- Evaluated a bench scale wellbore system
- Summary

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

The goal is to develop a monitoring system combined for the wellbore and the reservoir monitoring

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Distributed Coaxial-Cable Sensing

Outline

- Long term CO2 injection integrity monitoring problem statement
- Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring
- To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure
 - Strain
 - Temperature
 - Pressure
- Evaluated a bench scale wellbore system
- Summary

CC-FPI Sensor Principle

Outline

- Long term CO2 injection integrity monitoring problem statement
- Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring
- To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure

– Strain

- Temperature
- Pressure
- Evaluated a bench scale wellbore system
- Summary

Distributed strain sensors on a cantilever

• A cable with multiple FPIs is bonded on a cantilever

Strain distribution on a cantilever

• Press one end and fix the other end

bending moment

$$M(x) = P(x - L)$$

bending strain

$$\varepsilon = \frac{Mz}{EI}$$

strain distribution of nine sections on the cantilever with three end load

Real time distributed strain monitoring

Bend at one end

Press in the middle

Beam shape strain sensor

• A pair of distributed strain sensors are implemented to monitor strains at y and z direction

Displacement-Strain-Transformation

• Displacement is an integral of distributed strain

$$y[i] = \frac{1}{r} \sum_{n=1}^{i} \left(\sum_{m=1}^{n} \varepsilon_{top} L_m \right) L_n$$

$$z[i] = \frac{1}{r} \sum_{n=1}^{i} \left(\sum_{m=1}^{n} \varepsilon_{side} L_m \right) L_n$$

Coaxial cable torsion sensor

A single torsion sensor test rotate

Fix at on end, rotate the other end

Distributed torsion sensor test

The central sensor is under torque, while the other two is \bullet relaxed Torsion

Torsion response in central sensor

CCFPI Sensor design development

- Half-way holes
 - Unstable structure
 - Package issue

- Crimp ferrule
 - Easy fabrication
 - No further packaging needed

CCFPI Strain Sensors

Page 23

Coaxial Cable Strain Sensor

• Strain sensor is sensitive to temperature

Hollow coaxial cable to minimize temperature cross-talk:

Temperature cross talk is reduced to 20 ppm/°C, which is very close to the theoretical minimum of 16.6 ppm/°C (limited by the CTE of copper)

Outline

- Long term CO2 injection integrity monitoring problem statement
- Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring
- To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure
 - Strain
 - Temperature
 - Pressure
- Evaluated a bench scale wellbore system
- Summary

Coaxial Cable Temperature Sensor

• Reflectors are generated by crimped copper rings

 Repeatable linear temperature response with high sensitivity

Temperature response

Both materials and lengths will vary with temperature

- Test setup uniformity
 ±1.9 °C @ 100°C
- Deviation of four tests
 ±3 °C

Temperature response

- Temperature sensitivity – 18 ppm/°C
- CTE of copper
 - 16.6 ppm/°C

Pressure effects test set up

(a) VNA;
(b) pump;
(c) data acquisition;
(d) HPHT cell;
(e) temperature controller.

Pressure response on temperature sensor at constant temperature

Pressure effect on Temperature sensor

STATISTICAL RESULTS Source S.S. **F** Ratio Prob>F Temp 8.7e+14 2100 < 0.0001* 3.1e+14 751 < 0.0001* Pres Temp*Pres < 0.0001* 1.1e+13 28.9 Temp*Temp 7.8e+12 19.0 < 0.0007* Pres*Pres 6.0e+1214.5 < 0.0019*

ΔF

$$= 817 \times 10^{3} + 10.43 \times 10^{6} \times \left(\frac{T - 67.5}{42.5}\right) - 6.24 \times 10^{6} \times \left(\frac{P - 507.35}{492.65}\right) - 2.45 \times 10^{6} \times \left(\frac{T - 67.5}{42.5}\right) \times \left(\frac{P - 507.4}{492.7}\right) + 1.86 \times 10^{6} \times \left(\frac{T - 67.5}{42.5}\right) \times \left(\frac{T - 67.5}{42.5}\right) + 1.62 \times 10^{6} \times \left(\frac{P - 507.4}{492.7}\right) \times \left(\frac{P - 507.4}{492.7}\right)$$

Modified temperature sensor minimized pressure effect

STATISTICAL RESULTS

Source	S.S.	F Ratio	Prob>F
Temp	3.23e+14	178	<0.0001*
Pres	7.52e+11	0.413	0.5307
Temp*Pres	4.85e+10	0.027	0.8727
Temp*Temp	1.15e+12	0.635	0.4390
Pres*Pres	3.78e+10	0.021	0.8874

$$\Delta F = -6.262 \times 10^6 - 6.362 \times 10^6 \times \left(\frac{T - 67.5}{42.5}\right)$$

Outline

- Long term CO2 injection integrity monitoring problem statement
- Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring
- To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure
 - Strain
 - Temperature
 - Pressure
- Evaluated a bench scale wellbore system
- Summary

Microwave pressure sensor

• Principle: reservoir and capillary for amplification similar to the liquid in glass thermometer

Pressure-induced deformation

$$\frac{\Delta V_r}{V_r} = \frac{pD}{4tE} (5 - 4v)$$

The deformation is manifested by liquid column

Temperature cross-talk reduction

- The pressure sensor is also sensitive to temperature
- Fill low CTE material to minimize liquid volume

Liquid column interrogation

• Use microwave to measure the length of the liquid column in capillary

- Microwave travels slower in liquid than air
- The electrical length between two reflectors is liquid column dependent

Pressure sensor test setup

800

Stability

Pressure test results

• Sensitivity

- □ Stable and repeatable
- Detection limit ~ 1 psi

Outline

- Long term CO2 injection integrity monitoring problem statement
- Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring
- To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure
 - Strain
 - Temperature
 - Pressure
- Evaluated a bench scale wellbore system
- Summary

Proposed coaxial cable sensing system deployment method

Casing deformation modes

Wrapped sensor response to a specific deformation mode

3.2 Casing imaging system

Deformation Mode	Pipe OD (inch)	Sensor Length (inch)	Wrapping Angle (degree)
Axial Compression/ Radial Expansion	4.5 (PVC)	4	23
Bending	4 (PVC)	3	55
	6 (Steel)	3	35
Ovalization	6 (PVC)	3	35
	6 (Steel)	3	35

Axial compression test set up

Bending test setup

Ovalization test set up

PVC pipe axial strain results

PVC pipe bending results

Observations from pipe testing

- A prototype of the distributed coaxial cable casing imager has been developed and tested on both PVC and steel pipes
- The casing imager has good performance in casing axial compression monitoring for strain up to 1%
- There is a good match between theoretical and measured bending angle for bending angle up to 4 degrees
- The measured pipe ovalization follows the theoretical curve for pipe ovality up to 3%
- Pipe original roundness and straightness has a strong influence on bending and ovalization results
- The pre-stressing and epoxy properties influenced measurements especially when deployed on the steel pipe

Outline

- Long term CO2 injection integrity monitoring problem statement
- Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring
- To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure
 - Strain
 - Temperature
 - Pressure
- Evaluated a bench scale wellbore system
- Summary

Summary

- Distributed strain and temperature rigid coaxial sensors for down hole conditions have been developed and are verified at down-hole conditions
- The pressure sensor is developed and validated
- Distributed sensing concept using coaxial cable is proven
- A bench scale prototype with distributed coaxial cable sensors was wrapped with an angle to a pipe and replicated the imposed strain behaviour