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Distributed ener gy storage mitigates power-demand interruptions NHNUHELF
and improvesgreatly efficiency from coal plant to end users
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» Electricity demand changes significantly with time
» Electric grid often experiences interruptions, resulting in significant cost (> 80 Billions/year)
» Many of these interruptions may be mitigated by distributed energy storage approaches

Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan. Technical Report NREL/TP-6A2-47187, 2010




Proton exchange membrane electrolyzer cellsiPEM FCs) become mOI‘GNHNgHELp
attractive for energy storageto promote grid moder nization

» Advantage of PEM Electrolyzer Cells
High energy efficiency

High energy density

Fast charging and discharging

High purity of H2 and O2 productions
Compact system design

Stackable: easily scale up/down
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» Challenges for widely application
» Performance
»  Durability
» High cost of materials/manufacturing
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Space applications: high-efficiency devicesfor oxygen Nm
gener ation and ener gy storage =
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Sustainable energy system N
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OGS: oxygen generator system in the space station NEJHE
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Liquid/Gas Diffusion Layers (LGDLs): Multiple Functions NANDHELF
needed for liquid water, oxygen, electrical/thermal conductivities ==

» LGDL: Located between flow channel —
and catalyst-coated membrane

(catalyst layer +PEM) Anode

flow
channel

» Main functions:
»Transport reactant (liquid H,0) in and products
(H,/0,) out
» Conduct electrons and heat to flow channels
»Maintain excellent interfacial contact and
conductivity

Liquid /gas
diffusion
layer
(LGDL)

: . e 4y Catalyst
> Enhancing capillary flow, conductivities S |ayer
and interfacial effects with controllable :

pore morphology are strongly desired

PEM

= = J. Mo, R.R. Dehoff, W.H. Peter, T.J. Toops, J.B. Green, F.-Y. Zhang, Additive manufacturing of liquid/gas diffusion layers
- or low-cost and high-efficiency hydrogen production. International Journal of Hydrogen Energy 41, -



Conventional materials, including SS, graphite, corroded at NANGHELP
high- potentlal and hlgh -oxidative environmentsin PEMFCs
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Corrosion elements(Iron) attacked both catalyst layersand NANCHELP
membr ane, degr aded the performance quickly =
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Most conventional LGDL s are made of fibers: Titanium felts ~ NANOHELP
for anode and carbon fibersfor cathode S 4

» Advantages
— Good performance
— “Industry Standard”

» Disadvantages
— Thicker

— Random pore morphology /Pore control
difficulties

— High Cost
— Fiber penetration into membrane

— Degradation of porosity and

] permeability
‘ { i — Difficult to integrate with other parts
“atalys Plate with  Anode 2
Cathode E‘U;li;ll Anode Flnl:w :'um:nl End

askel Mcmbrane Crasket Churm cl Lusiributor Plaie

! J. Mo, S.M. Steen, B. Han, Z. Kang, A. Terekhov, F.-Y. Zhang, S.T. Retterer, D.A. Cullen. Investigation of titanium felt
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Different Structures of Metallic LGDL NANHELF

(1) Metallic foam (difficult to fabricate,
expensive, larger pore size, random pore
size, thickness difficult to control, difficult
to scale)

(2) Sintered fiber felt (non-ordered porous
structure, impossible to control individual
pore size, thickness can be a problem)

(3) Woven & sintered mesh (complicated to
machine, low interfacial contacts, large
thickness)

(4) 3D Printing mesh (wettability, thickness,
size of pores, shape of pores, pore
distributions are all controllable)

(5 Thin-film with straight throughout
mmrospores(wettab ity, thickness, size of
pores, sh agor&e pore distributions
bre ail control le)
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Perfor mance of PEM EC with Different Thickness Ti Felt &=
L GDLs
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Steen, S.IM. and F.-Y. Zhang: “In-situ and Ex-situ Characterizations of Electrode Interfacesin Energy Storage

Electrolyzers’, ECSTrans. 2014 59(1): 95-102
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Sputter Coating Surface Treatment — Promote I nterfacial MNP
Contact
- Physical Vapor
Deposition (PVD)
 Argon Gas Tank Sputter Coaling Chamber

- Voltage control system
 Vacuum system

- Sputter coating
Chamber

- 2.4 KV voltage

- Twice one minutes Vacuum System
process -

« 200 nm film on the
surface of fibers of
titanium felt LGDL.

J. Mo, S.M. Steen, B. Han, Z. Kang, A. Terekhov, F.-Y. Zhang, S.T. Retterer, D.A. Cullen. Investigation of titanium felt

Controller
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transport parameters for energy storage and hydrogen/oxygen production. AIAA 2015-3914 (2015).



Thermal Nitridation —A Cheaper Method for Surface pr

Treatment

- Chemical Vapor
Deposition (CVD)
* High-temperature
furnace
- Vacuum system
- Gas supply system

« 900 °C for 10 mins

« 1 um thickness
titanium nitride thin
film on the surface
of fiber of titanium
felt LGDL

:




NANCHELF

SEM and EDS Results of Origin Titanium Felt LGDL S
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Perfor mance and | mpedance Comparisonof PEM EC with NANGHELP

L GDL Under Different Surface Treatments N
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J. Mo, S.M. Steen, B. Han, Z. Kang, A. Terekhov, F.-Y. Zhang, S.T. Retterer, D.A. Cullen. Investigation of titanium felt
transport parameters for energy storage and hydrogen/oxygen production. AIAA 2015-3914 (2015). 17




Solutions: titanium and thin LGDLswith well-tuned pore NANOHELP
parameters, smaller interfacial resistance and uniform distribution =

» Challenges: need multifunctional LGDLs with
minimum losses of transport, electrical and
thermal properties combined with high
durability in oxidizing and reducing
environments.

» Thinner (<0.05 mm)

» Controllable pore parameters, including pore
Size, shapes, porosity

> Smaller resistances
> Better thermal/electric distribution
» More catalyst utilizations

» Easy surface modification/component
integration

18




Mask Patterned Wet Etching: Low-cost and Well-controllable — NANGHELF
Fabrication Processfor Thin LGDL and Current Distributor N
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J. K Mo S M. Steen A. Terekhov S. T. Retterer, D. A. Cullen,and F. Y. Zhang “Mask- Patterned Wet Etching of




Thin LGDL s have been successfully fabricated with different
design parameters
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Thin LGDLsweretested in a standard electrolyzer cell NANDHELP
W|th test station and control system
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Excellent performance isobtained with developed thin Nﬁﬁfmﬂp
L GDLs: about 10 % of efficiency improvement =
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Efficiency improved from 78% to 87% at a current density of 2.0 A/cm?

Thickness is reduced from 350 um to 25 um
22




Thin LGDLswith different pore morphologies

Index of the LGDL Pore Size (D)[um] Land Length (L)[um] Calculated Porosity (<)
0.29

199.11 142.41 0.31
424.64 292.91 0.32
586.96 448.51 0.29

23
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Characteristics of thin and wdll-tunabletitanium LGDLSs

» Casel

% Pore Size: 100 microns
«* Thickness: 25 microns
s Porosity:  30%

» Casell

«* Pore Size: 200 microns
+ Thickness: 25 microns
% Porosity: 30%
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Theimpact of the pore size and porosity
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» With the increase of the pore size at the same
porosity, the PEMEC performance decreases

» With the increase of the porosity from 0.3 to
0.7, the performance of the PEMEC was
significantly improved

» The porosity has greater impact on PEMEC

performance than pore size in this range -




Electrochemical | mpedance Spectrocopy

» The left x-intercepts (at the high frequency part) indicates

the ohmic loss of the whole PEMEC, while the right one
(at the low frequency part) isthe sum of the resistance

The distance between the two intercepts indicates the sum
of activation and mass transport |osses

LGDLswith aporosity of 0.3 have larger ohmic resistance,
and the value decreases with the increase of porosity

The ohmic loss decreases significantly from around 0.08
ohm*cm?2 for the LGDL with a porosity of 0.7 to less than
0.07 ohm*cm?2 for one with a porosity of 0.3

LGDLs having a porosity of 0.7 show smaller first and
second arcs, which indicates that the activation and mass
transfer losses decrease with the increase of porosity from
0.3 to 0.7, and the sum of activation and mass transfer
losses are reduced from about 0.046 ohm*cm?2 for 0.3
porosity LGDLs to 0.039 ohm*cm2 for 0.7 porosity

LGDLs
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NANCHELF

ElS modd =
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ElS moddl results

1.23E-08 0.0779 0.0406 0.006 0.31
1.19E-08 0.0804 0.0410 0.005 0.29
1.28E-08 0.0822 0.0411 0.004 0.23
1.24E-08 0.0825 0.0418 0.004 0.31
1.21E-08

28
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NANHELP

o

Better performance will be obtained with temperature
INnCrease
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Thin and well-tunable L GDL swith straight pores make it NANCHELP
possibleto in-situ investigate electrochemical reactions =

» The electrochemical reaction sites on CLs are next to the center part of PEM and
located behind LGDLSs, current distributor with flow channel and end plate

» LGDLs are typically made of titanium fibersin random pore morphology
Interconnected and complicated structures in the current LGDLS

» Current distributors are made from titanium to resist the high potential and
oxidative environment

Reaction site




In-situ visualization with developments of novel LGDLSs, NANOHELP
transparent PEM FCs and high-speed/microscale system =

» Fabricate well-tunable transport L GDLs with straight pores
» Design atransparent PEM Electrolyzer Cell
» Develop a high-speed and micro-scale visualization system (HMVS)

E_ e Y
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High-speed and Micro-scale Visualization System (HMVS) —
» Transparent PEM water
i Catalyst  Thin-film  Current Transparent ~ End Plate High-speed
electrol yzer cell with HMVS Coated Liquid/Gas Distributor  Plate with with an Micro-scale
Membrane Diffusion  with Flow  In-flow Observation Visualization
> Observation window on the Layer Channel Channel Window System
end plate Prassar | |
» Conventional bipolar plate

(BP) was split into two
components:

% Thin titanium current |5
distributor with
throughout flow pattern

% Transparent block with
inflow channels

» Thin/well-tunable LGDLs
with straight-through pore

ﬁ...{.‘ 433_,'[
A 32




Only small portion of catalyst function as designed and great NANOHELP
opportunity for cost reduction =

catalyst

> Reactions at anode side: ~ 2H,0 2250, + 4H* + 4e-

33




Additive manufacturing of L GDL to enhance interfacial NANGHELP
effects with low cost =

34
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Perfor mance and | mpedance Comparison Between Woven NENCHELF
Mesh and 3D Printing L GDL =
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J. Mo, R.R. Dehoff, W.H. Peter, T.J. Toops, J.B. Green, F.-Y. Zhang, Additive manufacturing of liquid/gas diffusion

layers for low-cost and high-efficiency hydrogen production. International Journal of Hydrogen Energy 41, 3128-
3135 (2016). 35




Two phase model coupled with comprehensive perfor mance NANCHELP
analysisfor a PEM electrolyzer cell has been developed =

.

» Gas/liquid two-phase transport equations e

Oxygen transport:

Liquid water transport:

Kky o )
V.|—————"p =N
( .uHZO/ PH,0 20 20

Capillary pressure:
e\1/2
Pc = Po, — Pryo = J(5) (E) ocos6

(1.417(1 — s) — 2.120(1 — 5)2 + 1.263(1 — 5)3, 2

0<B8 < 900, hydrophilic i @ Plate @ Flow channel @ LGDL
1.417s — 2.120s% 4+ 1.2635%, | everett’s function x @o ®) pem
|90° < 6 < 180°, hydrophobic

J(s) =
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The electrochemical voltage consists of open circuit voltage, NANCHELP
activation, diffusion over potential and onmic loss N

» Electrochemical performance
Total potential:
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Han, B., Steen, S. M., Mo, J., and Zhang, F.-Y. "Electrochemical performance modeling of a proton exchange
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NADELY

e TR

Liquid saturation distribution in the LGDL

Theliquid water saturation distribution along the LGDL thickness direction at
different contact angles and porosities.
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Thinner LGDL s and membraneswill decrease the

ohmic/transport resistances and enhance the performance =

> Effects of L GDL thickness on the cell

performance and efficiency
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NANHELP

» Effects of LGDL porosity on the cell
performance and efficiency
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Summary

> A novel-designed thin titanium LGDL with microscale and well-tunable pore
morphologies is developed based on micro/nanomanufacturing techniques

» Superior multifunctional performance for energy storage is obtained

» Performance increase with porosity, while decreases with the increase of pore size from
100 to 800 um

> By developing a thin/well-tunable liquid/gas diffusion layer (LGDL), and other designs,
the true mechanism of electrochemical reactions on both micro-spatial and micro-
temporal scalesisrevealed for the first time

» With high-speed and microscale visualization system, the multiscale detail s about
corrosion dynamics were exposed

» Additive manufacturing of multifunctional materials and demonstrated its potential
» Modeling two-phase flow and simulating the effects of material properties

40
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