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Introduction

1. Fluid-particle flow are common in many energy
applications, such as fluidized bed and risers.

2. Two-Fluid model is the most widely used in
simulating this type of flows. However, the
hydrodynamic description is inaccurate when
particles are dilute.

3. Quadrature-based moment methods (QBMM) can
be used to find approximate numerical solutions to
the particle kinetic equation, thus model particle
motions more accurately. But its explicit nature
makes it inefficient when particles are close-packed.

4. Our objective is to develop a solution algorithm that
combines the best features of the hydrodynamic
and QBMM solvers, which can accurately simulate

http://www.gussingrenewable.com/ fluid-particle flows across all flow regimes.
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Fluid-Particle Flow Governing Equations

Fluid Continuity:

af:,;:xq +V - pgo U, =0
Fluid Momentum:
Op.a,U.,
pqatq — 4V g U, ®Uy = V- pyoiy0 g —Vpy+pgcgg—ppoey Mg

l'-‘q
M ——U \——Vp =V - a0
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Particle Kinetic:

of(v) . 0f(v) _
ot "V Tox +av'f(")A‘S

A represents acceleration due to forces acting on each particle,
S represents other possible source terms, e.g. particle collisions.
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Fluid-Particle Flow Governing Equations

Particle Moments Transport:

oM
W+V ‘F -8 Nq—;k_ 'Ul'Uzvif()
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Particle Continuity:
Oppo
p%p _
CTE V- ppa,U, =0
Particle Momentum:
dppa U,
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Particle Particle-Pressure Tensor:

Apae, Py
M
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Particle Kinetic, Collisional and Frictional Flux
Kinetic Flux: U,@U,+ P, P,=06,I-0o,
oy = 2,8,  S,= % [vup L (VU)T - g(v U,) 1]
Collisional Flux: Gp _ [2(1+6)apg[]6p_yp,bv'Up]I_ZUp,cSp

Z, Fr (ap — Oy, ffr,'m'i'n) (I 25in ¢ Sp)

a Pop (Qpmaz — a’p)s 1S5l

Frictional Flux:

Granular Pressure:  Pp = Pp .k + Dp,c + Pp.f

Particle Viscosity: Vp = Vpk + Vpct+ Vpf

2
Kinetic and Collisional Heat Flux: Q,+H,= —gk@v ®P,
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Operator-splitting scheme for all flow regimes

oM

—+V - WF+V - (F+G+2Z)=S8

ot
hi=1-hy

hy = ( Phe + P )”
pp:k +p;,f.‘ +ppf + €
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. oM
Hydrodynamic solver: 5 TV (hyF +G+2Z)=8

Particle Volume Fraction:
3 2 h U,=
_t + V . 2ap p = 0

Particle Velocity :

o,

v, . er n n
p —-V-(hgﬂpup @U, - =I— 2&,,1:,,.5,,) = ﬂpg_r_p (Uy — Up)—P—prﬂ—-rtppyV-ﬂ,,ﬂ'y-

e P P

Pp = haPpi + Ppc+ Dp s Vp = hatpi + Vpe + Vg

Particle Granular Temperature :

3 { 0,0 pho f1-¢2 1
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oM
Free transport solver: - TV mF=0

Anisotropic Gaussian Velocity Distribution:

o 1 _
3D Gauss-Hermite Quadrature Granular Stress Tensor Transport

2D velocity distribution

dp,0,0 2 .
%ﬂ-quﬂnﬂ (hEUP'@ a, — Ekev I\ 'a-]!) = Ppty (Sz,ﬂu:r - SZ)
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Wall boundary conditions

Hydrodynamic solver:

L ]
Yp

BUPJ

_ _ Dpstan gw Upy _ oTan
Oy MawbaVulps Pty |Upil Vu = (n/6) V30,
00 , 3 ,
kz)am:: —_ h2=-u1 [Qb,ngIUp:tl‘! — § (l — eﬁ,) v-mep]

Free transport solver:
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Example kinetic theory coefficients in hydrodynamic model
for particle phase

= dpds Dpk = Pp0pOp
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Solution algorithm

Initialize all
variables

Construct U, equation

\4

Determine AT
CFL condition

Solve p equation

4

Calculate h2 and h1 No

Converged?

Yes
Solve moments transport,
update a,, ©,, 0, and U Solve g, equation

Solve a;, equation Update moments

q Yes Continue or
Solve ©,, equation not ?
No
Construct Uy, equation ey End
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Example results, test case 1: fluidized bed

D, = 300um pp = 2500K g/m® pg=12Kg/m®  y, =18 x 107°m?/s
L, =0.15m Ly=1m N, =30 Ny, =200
Qp hy Upy O

alpha.particles .
—6.000e-01 h2Fn U.particles Y Theta.parlicles
z -1.000e+00 9.000e-01 - 1.000e-02

T

0.45 g ;
0.45 0.0075

-0.3 g
0 0.005

+0.0025

~0.000+00
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Example results, test case 2 : vertical channel riser

D, = 100um pp = 1000K g/m® pg=1Kg/m® v, =18x 107°m?/s
L = 0.05m Ly =0.35m N, = 56 Ny = 280
< ap >=0.01 <ap>=0.1 <a,>=04

—(0.,0002+0(
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Example results, test case 2 : vertical channel riser

< ap >=0.01
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Conclusions

1. A solution algorithm is proposed to accurately treat all fluid-particle
regimes occurring simultaneously.

2. This algorithm is based on splitting the free-transport flux solver
dynamically and locally in the flow. In close-packed to moderately dense
regions, a hydrodynamic solver is employed, while in dilute to very dilute
regions a kinetic-based finite-volume solver is used in conjunction with
guadrature-based moment methods.

3. Toillustrate the accuracy and robustness of the proposed solution
algorithm, it is implemented for particle velocity moments up to second
order, and applied to simulate gravity-driven, gas-particle flows exhibiting
cluster-induced turbulence.

4. By varying the average particle volume fraction in the flow domain, it is
demonstrated that the flow solver can handle seamlessly all flow regimes
present in fluid-particle flows.
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Semi-discretized equations
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