Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

SMARTER: <u>Science of Multicomponent Alloys</u> – a <u>Theoretical and Experimental Roadmap</u>

Matthew J. Kramer, Tyler R. Bell, Pratik K. Ray, Prashant Singh, Linlin Wang and Duane D. Johnson

This work is supported by **Office of Fossil Energy (Cross-cutting Research Program), US-DOE** under the contract number DE-AC02-07CH11358

High Entropy Alloys: overview

Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

Miscible systems show negative formation enthalpies, and a tendency to form intermetallics

Stabilizing disordered phase requires high entropy. This is favored by equiatomic compositions in multicomponent systems

Stability criteria

Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

$$\Omega = \frac{T_M \Delta S_{mix}}{\left| \Delta H_{mix} \right|} > 1.1$$

 $T_M = \sum_{i=1}^n c_i (T_M)_i$

Entropy (disordered phases) dominates enthalpy (ordered phases)

Multiple stability criterion – potential for *in-situ* functionalization?

$$\delta = \sqrt{\sum_{i=1}^{n} c_i (1 - r_i / \bar{r})^2} < 6.6\%$$

Similar to Hume-Rothery rule, i.e. minimize size differences in order to form the solid solutions

Y. Zhang, X. Yang and P.K. Liaw, JOM 64 (2012) 830

$$VEC = \sum_{i=1}^{n} c_i (VEC)_i$$

VEC < 6.87 *bcc* phases; VEC ≥ 8 *fcc* phases

S. Guo, C. Ng, J. Lu and C.T. Liu, J Appl. Phys. 109(2011) 103505

- Can we manipulate the short to medium range order?
 - Promote clustering to enhance strength or toughness?
 - Enhance diffusion of oxidatively stable phases?
- Requires highly accurate models
 - Atomistic simulations of highly complex chemistries are computationally intensive
 - Simulations must be accurate for long spatial and temporal scales

Challenges with disorder

Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

- Experimental Measurement: quenched or annealed samples.
- Band calculations: not always related to experimentally assessed (thermal and off-stoichiometric effects).

THE Ames Laboratory

A Coloring Problem

Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

There are n(n + 1)/2 partial pairs for an *n* component system

Problem Definition and Approach

Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

Grand Challenge: to speed the discovery and optimization of these chemically complex alloys and leverage our theoretical and experimental capabilities for assessing their long-term stability

Year – I: Milestones and Approach

Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

Validation of the KKR-CPA approach for multi-component systems

- Application to well-explored systems
- Applications to new systems and compositions

Baseline oxidation metrics

- Oxidation resistance in High Entropy Alloys as a function of temperature
- Comparison with Ni alloys
- Potential for improvements

predict and interpret <u>atomic</u> <u>short-ranged order</u> in

n -component substitutional
disordered alloys, and provide its
electronic-structure origins, e.g.,
low- temperature LRO behavior.

Two example systems Zr-Hf-Nb Al-Ni-Fe-Cr-Co

Modeling disorder

Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

Idea of CPA (<u>C</u>oherent <u>P</u>otential <u>A</u>pproximation)

Velicky et. al., Phys Rev 165 (1968) 747

Direct calculation of energetics for Disordered/Partially-Ordered/ Ordered States

• DFT-based multi-sublattice KKR-CPA (configurational averaging)

Thermodynamic Linear-Response calculations

- KKR-CPA based chemical or magnetic susceptibilities
- Directly calculate the energy associated with ASRO

The Zr-Nb-Hf system

Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

Theoretical prediction: Nb additions promote B2 ordering, resulting in a hcp \rightarrow bcc transition with increasing Nb content

In-situ diffraction: Zr-Nb-Hf alloys

Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

Key Issues – validate CPA code with predictions of the T dependent stability

KKR-CPA calculations predict the existence of two phases at the equiatomic concentration – possibility of developing functionality in service, if we can synthesize the alloy as a single phase.

Singh, Smirnov, and Johnson, Phys. Rev.B 91, 224204 (2015)

The Al-Ni-Fe-Cr-Co system

Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

Phase separation:

- Al-Ni rich [Ni₃₀Al₃₀Co₂₀Fe₁₀Cr₅]
- Fe-Cr rich [Fe₃₀Cr₃₅Co₂₀Ni₁₀Al₁₀]
- FCC + BCC type phases

Model Output and Interpretation

Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

- Stable B2 phase found in Experiments and CALPHAD (AI>0.25%).
- KKR-CPA also shows stability of B2 phases.
- Good agreement b/w *predictions*, CALPHAD, and expt.

Oxidation kinetics: Al-Ni-Fe-Cr-Co

XRD pattern from the oxide scale

corresponds to single-phase α -Al₂O₃

<u>Key questions</u> –

- How does the microstructure change during oxidation – can we develop a "skin" *in-situ*
- Temperature limits imposed by oxidation on the current alloy.

Phase	k _p (g²/cm ⁴ .s ⁻¹)	E _A (kJ/mol)
α -Al ₂ O ₃	3.5 x 10 ⁻¹³	231
θ -Al ₂ O ₃	6.3 x 10 ⁻¹³	382

 θ -Al₂O₃ forms at lower temperatures, whereas, the external scale consists of α -Al₂O₃ at higher temperatures (>1000°C)

Evolution of oxidized surface

Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

The initial oxide is rich in Cr content, and becomes Al rich with time.

2600

Effect of Al:Cr ratios on oxidation

Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

- Given the relatively low stability of chromia, increased Al content helps with oxidation.
- But the initial formation of Cr₂O₃ promotes the growth of Al₂O₃, hence extremely low Cr content may not be desirable either

General Summary

Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

Model validation for High Entropy Alloys

- Baseline oxidation behavior of AlNiFeCrCo High Entropy Alloys
- Preliminary work on composition optimization
- Model extension for hexagonal system
- Microstructure / composition optimization

Improvements in KKR-CPA approach

- Extension of the KKR-CPA approach to general lattices, i.e. N components, N sub-lattices. Eg: hcp structures
- Combined KKR-CPA, ASRO and planar defect energies (with Suzuki effect) will guide the design of improved alloys, e.g., High-Entropy Alloys.

Alloy selection and microstructural design

 Adoption of a hierarchical screening approach, with a combination of multicomponent Miedema, KKR-CPA and Nudged Elastic Band methods (diffusion through oxide scales)

Proposed Work

Background and Challenges Modeling Phase Stability Oxidation Behavior Summary

- Composition optimization for improved oxidation resistance in AlNiFeCrCo alloys
- Oxidation studies on alloys downselected via Miedema + KKR-CPA and NEB approaches
- In-situ synchrotron diffraction studies on the evolution of the oxide scale at elevated temperatures
- Diffusion multiple analyses for optimizing microstructures, phase assemblages and processing conditions

This work is supported by the **DOE-FE (Cross-cutting Research program)** through Ames Laboratory contract no. DE-AC02-07CH11358

We would like to acknowledge –

- Srini Thimmaiah, single crystal diffraction
- Kurt Koch, EDS maps on oxidized surfaces
- Jim Anderegg, X-ray Photoelectron Spectroscopy
- Bryce Thoeny, Sample Preparation and castings

