

Experimental Methods

Flow facility¹:

- Ejected plasma kernel (into crossflow)
- generated by aircraft type igniter
- Fuel-air stratification allows initial kernel evolution before encountering fuel
- achieved by splitter plate; premixed fuel-air in main, air only in kernel flow
- also creates nearly uniform velocity in cross-flow

Pre-vaporizer:

• Fuel sprayed into heated carrier air; vaporized mixture injected into main flow air (440 K)

Diagnostic methods:

- Integration of broadband emission for ignition probability
- High frame rate mode for schlieren imaging of kernel growth and chemiluminecense

Ignition Probability:

Figure 1. Schematic of stratified flow setup

Figure 2. Schematic of the liquid fuel vaporization setup

Figure 5. Time-integrated image of successful ignition (top); ignition probability variation with main zone equivalence ratio (bottom)

- Equivalence ratios $\varphi \sim 1.0-1.6$
- Ignition probability defined as

$$(ign) = \frac{N_{succ}}{N_{tot}}$$

- **V**total
- Fuels ranked at φ =1.5

Observations

- Statistically meaningful variation between fuels
- Three fuels selected for further study C-5 (high), A-2 (med), C-1 (low)

0.6

I

 $(ign)_i / P(ign)_{A2}$

p = 1.5

2 TA-1

 $\diamond C-5$

Acknowledgements:

This work was funded by the US Federal Aviation Administration (FAA) Office of Environment and Energy as a part of ASCENT Project 13-C-AJFE-GIT-008 under FAA Award Number: 27A. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA or other ASCENT Sponsors.

Forced Ignition of Fuel-Stratified Flow

Sheng Wei, Brandon Sforzo, Jerry Seitzman Ben T. Zinn Aerospace Combustion Laboratory Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology

Objectives

- Measure ignition probabilities for a number of fuels in a flow that can be easily modelled
- 2. Initial focus on chemical effects by prevaporizing fuels
- Develop reduced order model that captures 3. important physics

Motivation

- Reliable ignition is critical for turbine engine operation
- Most forced ignition studies are for premixed/ uniform conditions, e.g., SI engines
- Need better understanding of forced ignition in turbine engine relevant flow; for example, lack of fuel near igniter
- Previous work examined natural gas fuel systems, current focus is jet fuels and fuel composition effects

Conclusions

- Significant difference in probability among fuels observed
- Ignition probability is strong function of equivalence ratio
- Flame growth rate (from chemiluminescence) indicates similar flame speeds for all fuels but with delayed beginning
- Bifurcation in temperature from reduced-order modeling demonstrates ability to classify successful vs. unsuccessful ignition

Future Work

- Investigate non-vaporized liquid droplet ignition and develop parameters to characterize ignition
- Compare simulation results of all fuel models. Incorporate twophase into current model

References: [1] B. A. Sforzo, "High Energy Spark Ignition in Non-premixed Flowing Combustors," Ph.D. dissertation, Dept. Aero. Eng., Georgia Institute of technology, Atlanta, Georgia, 2014 [2] Cantera Developers, "Cantera," Internet: http://cantera.github.io/docs/sphinx/html/index.html, 2012 [Oct. 28, 2015] [3] Wang, H., Xu, R., Hanson, R. K., Davidson, D. F., Bowman, C. T., "A HyChem Model of Jet Fuel Combustion," Personal communication, 2015.

full optical access

Reduced-Order Modeling

Modeling tool:

Cantera²: Open-source object oriented software tools for solving problems involving chemical kinetics, thermodynamics, and transport process

Two-staged Perfectly-Stirred Reactor(PSR)¹

- First stage simulates entrainment of dry-air into airplasma(spark) kernel
- Second stage simulates entrainment of fuel-air mixture at kernel
- Mass entrainment rate obtained from schlieren imaging

Mechanisms:

- Stage 1: SforzoairNASA9.cti¹ dry air plasma
- Stage 2: POSF10264.cti³ A 2 fuel mechanism

Kernel Temperature History:

Figure 10. Kernel temperature for 90µs transit time, 400K cross-flow and various main equivalence ratios

Kernel Species Histories:

Figure 11. Kernel species mole fractions for successful (solid) vs. unsuccessful (dashes) ignition cases

Pre-vaporized Flammable Flov

Non-Flammabl

Kernel Flow

certain equivalence ratios after the first-stage air-plasma

splitter plate

Figure 4. Conceptual representation of a Perfectly-Stirred Reactor(PSR)

