

Fundamental study of Key Issues related to Advanced S-CO₂ Brayton Cycle

Sandeep R. Pidaparti, Dorrin Jarahbashi, and Devesh Ranjan

Supercritical CO₂ Brayton Power Cycle

- U.S. Department of Energy (DOE) initiative for clean and efficient energy ulletconversion for a variety of heat sources
- Properties of Supercritical CO₂ (S-CO₂):
 - Specific heat of the fluid reaches its maximum at the pseudo-critical temperature. \bullet
 - Strong property variations with temperature in the pseudo-critical region

600

550

500

450

400

350

200

150

100

С 250 Г

Cycle Benefits ✓ Combines advantages from air

- Brayton and Rankine cycles
 - Reduction in size of turbomachinery \checkmark components
 - ✓ Lower back work ratio improves cycle efficiency
 - Efficiencies as high as ~50% possible (For turbine inlet temperature $\sim 650^{\circ}$ C)

Nucleation in Supercritical Carbon dioxide

- Nucleation might occur at the compressor inlet and turbine outlet causing material erosion of the components
- Either cavitation bubbles or condensate droplets can form within $\pm 1^{\circ}$ C temperature \bullet variation close to the critical pressure Close to the critical point small amount of sub-cooling or super-heating is required to \bullet reach metastable states
- A transient compressible Navier-Stokes solver, coupled with continuity & energy equation in OpenFOAM
- Fluid interpolation table (FIT) libraries integrated with OpenFOAM to model CO₂ properties.
- Homogeneous equilibrium model (HEM) used in the two-phase dome.
- Slip between phases, $S = \left(\frac{\rho_L}{\rho_L}\right)$ $\approx 2 \text{ m/s} \ll 100 \text{ m/s}$

Goals

- \checkmark Current focus is on designing a venturi system.
- Different material samples will be installed downstream of the throat to study material degradation.
- Optical access will be provided to capture the formation, growth, and collapse of nucleation phenomenon in the throat region

Venturi Facility

- Condensation was mostly present observed close to the walls indicating that the condensate droplets will stick to the walls
- Moving away from the walls vapor cavities can be expected as indicated by the computational model
- The complex density gradients in the flow will make optical diagnostics challenging

- the venturi profile to measure frequency of
- Shadowgraph/Schlieren optical system for qualitative and quantitative measurements
- Resolution of $\sim 1.5 \mu m/pixel$ in throat region

1000

- Optimization of labyrinth seals for a fixed length
- Inlet conditions of (9MPa, 498 kg/m³) and outlet conditions of 5MPa
- Adding more seals will reduce the leakage rate up to certain point
- As the spacing between seals increase, the pressure loss due to recirculation in the cavities decrease which causes an increase in leakage through seals