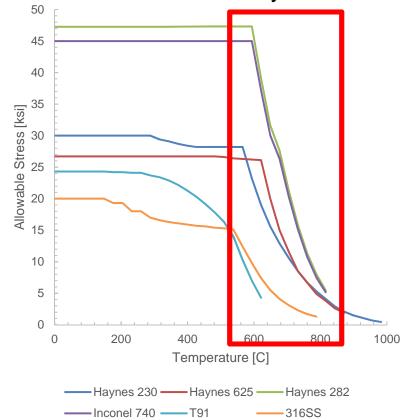


Corrosion of Nickel-Base Alloys in Supercritical CO₂ Environment

David Adam
Jacob Mahaffey
Arjun Kalra
Dr. Mark Anderson
Dr. Kumar Sridharan

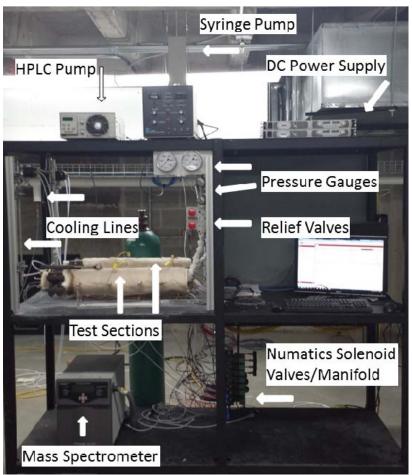
EPRI International Conference on Corrosion in Power Plants, October 12-15, 2015, San Diego, CA


Outline

- Motivation/Background
- Testing Facility and Procedure
- Results
- Discussion
- Conclusions

Motivation/Background

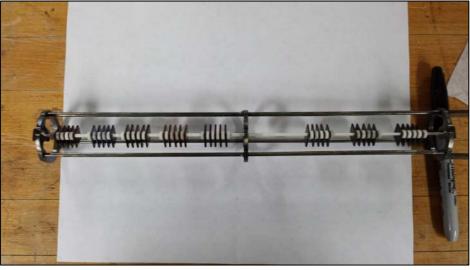
Allowable Stresses for Alloys of Interest



Estimated Data for IN740, Haynes 282 from:
Weitzel, P., Steam Generator for Advanced Ultra Supercritical Power Plants
700C to 760C, Proceedings of the ASME 2011 Power Conference
July 12-14, 2011, Denver, Colorado, USA

- High temperature, high pressure conditions of SCO₂ Brayton cycle environments require suitable materials
- Must understand corrosion phenomena to withstand these extreme environments
- Long-term corrosion can lead to:
 - Reduction in effective wall thickness
 - Reduction of thermal conductivity
 - Corrosion debris

High Temperature, High Pressure SCO₂ Test Facility


Current setup of test facility

- Testing temperature up to 750°C
- Temperature control allows system to operate within ±1°C
- Pressures up to 3600±2 psi (temperature dependent)
- System operates at an average flow rate of .11kg/hr
 - CO₂ refresh rate every two hours

Sample Holder with Samples

- Sample holder made out of Haynes 625 alloy
- Samples are 0.5"x0.5"x0.0625" square coupons
- Alumina rod suspends samples in continuous stream of CO₂
- Alumina spacers separate samples
- Fits up to 70 samples

Testing Procedure

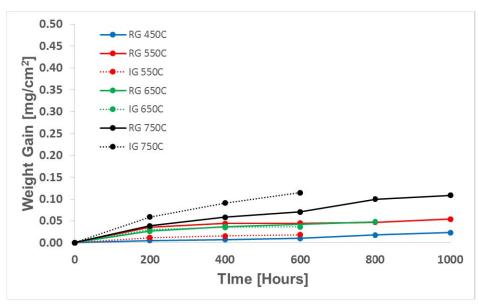
- Untested samples polished to 800 grit, then cleaned with ethanol and DI water
- Weight measurements are accurate to ± 2µg and dimensions have an accuracy of ± 2µm
- Samples are tested at 20 MPa and 450°C-750°C at 200 hour intervals up to 1000 hours
- Samples analyzed using SEM, EDS, XRD, etc.

Composition of Alloys by Weight %

	С	Mn	Fe	Si	Cu	Ni	Cr	Al	Ti	Со	Мо	Nb	W
IN740 (Special Metals)	0.023	0.245	0.1491	0.17	0.015	50.04	24.57	1.33	1.33	20.09	0.35	1.46	0.022
H230 (Haynes)	0.1	0.52	1.02	0.31	0.04	Bal~59.94	22.08	0.37	0.01	0.21	1.23		14.17
H625 (Haynes)	0.02	0.26	5	0.25		Bal~59.63	21.89	0.22	0.29	0.28	8.59	3.51	
H282* (Haynes)	0.06	0.3	1.5	0.15		57	20	1.5	2.1	10	8.5		
Ni-20Cr*						80	20						

^{* -} nominal composition

Trace	Eleme	nts:						
Alloy	S	Та	Р	В	N	V	Zr	La
IN740	0.003	0.004	0.0023	0.0013	0.0038	0.012	0.021	
H230	0.002			0.002				0.012
H625	0.002	0.05	0.006					


Research and Industrial Grade CO2 Gas Certificates

	Research Grade CO ₂	Industrial Grade CO ₂
Component	Purity Limits	Purity Limits
CO ₂	99.999%	99.5%
Ar+O ₂ +CO	<1 ppm	<50 ppm
Total Hydrocarbons	<1 ppm	<50 ppm
Moisture	<3 ppm	<32 ppm
Nitrogen	<5 ppm	

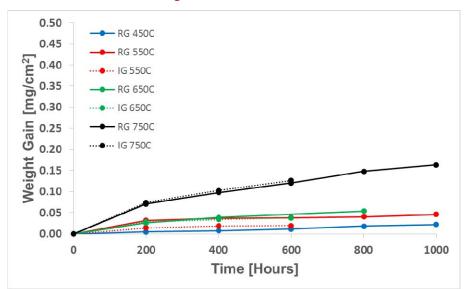
Gas analysis has been conducted by third party

Haynes 230 Weight Change Data

	1
2	

	Pt. 1	Pt. 2
Cr	64.42	48.94
Mn	20.91	2.88
Fe		1.03
Ni	9.52	41.38
Мо	4.12	1.26
W	0.5	4.33

Atomic Percent


Highest weight gain for each temperature				
	IG	RG		

	IG	RG
550°C		\checkmark
650°C		\checkmark
750°C	\checkmark	

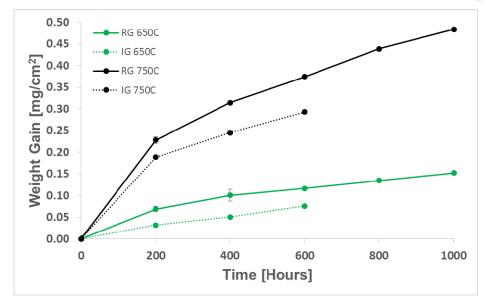
- Overall highest weight gain: 750°C IG
- Uniform chromia with Mn/Mo oxide clusters present

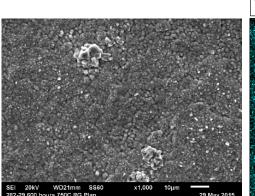
Haynes 625 Weight Change Data

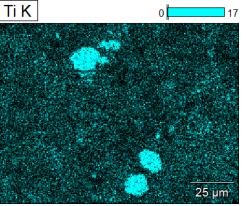
SEI	5kV	WD23mm urs RG Plan \	SS30	x2,500	10µm	19 Nov 2014
٠.				10.4		
	. +	40		-	. 3	
and a			-17			
	- T	a	or (<u> </u>		
	- 7	e file				4.7
		R .			artic of	
		6			6	-
, ac			Ξ,		5	
	SHALL S	A STATE OF THE PARTY OF	78			A STATE OF THE PARTY OF THE PAR

	Point
Ti	24.95
Cr	63.24
Mn	4.06
Ni	5.99
Nb	0.32
Мо	0.98

Atomic Percent

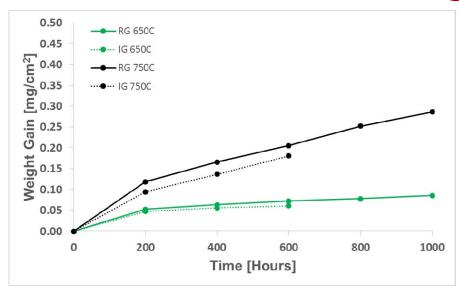

Highest weight gain	for each
temperature	
10	5.0

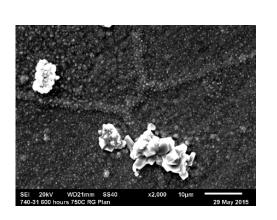

	IG	RG
550°C		\checkmark
650°C	Similar	Similar
750°C	Similar	Similar

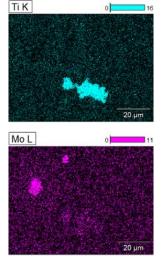

- Overall highest weight gain: 750°C RG
- Very little difference between 650°C RG, and 650°C IG
- Very little difference between 750°C RG, and 750°C IG
- Uniform chromia with Ti/Mn oxide clusters present

Haynes 282 Weight Change Data

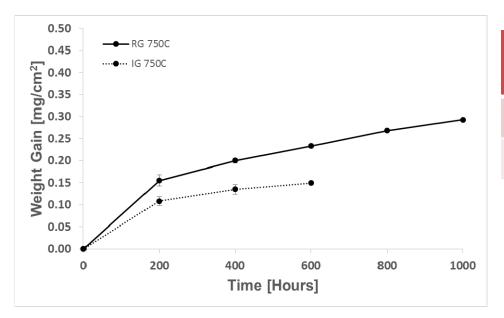
Highest weight gain for each temperature					
	IG	RG			
650°C		√			

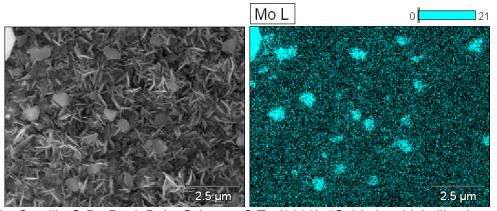

	7000		V
•	Overall h	nighest weig	ht gain:
	750°C R	G	


750°C


- Uniform chromia with Ti oxide clusters present
- Highest weight gain of all alloys at 750°C

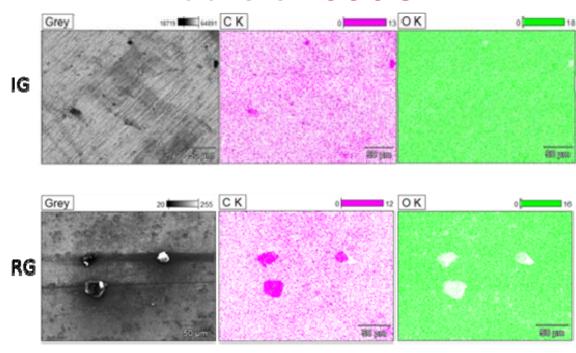
Inconel 740 Weight Change Data




Highest weight gain for each temperature							
IG RG							
650°C		\checkmark					
750°C		√					

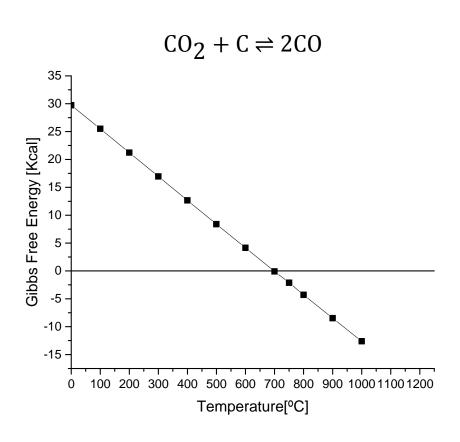
- Overall highest weight gain: 750°C RG
- Uniform chromia with Ti/Mo oxide clusters present
- Increased corrosion along grain boundaries

Ni-20Cr Binary Alloy Weight Change Data

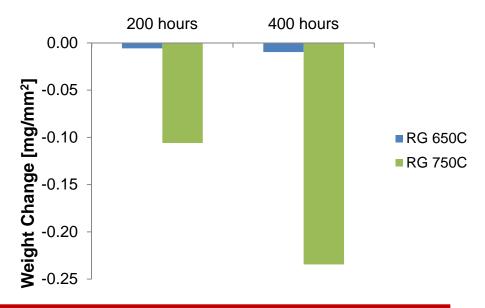

	Highest weight gain for each temperature IG RG			
	IG	RG		
750°C		\checkmark		

- Highest weight gain: 750°C RG
- Uniform chromia with Mo oxide clusters present
- Mo oxide clusters believed to be from volatilized Mo oxide from other samples or from Haynes 625 autoclave†

† - Smolik, G.R., Petti, D.A., Schuetz, S.T., (2000). "Oxidation, Volatilization, and Redistribution of Molybdenum from TZM Alloy in Air." Idaho National Engineering and Environmental Laboratory, INEEL/EXT-99-01353


Surface SEM of H230 in IG/RG CO₂ after 400 hours at 650C

- Large carbon clusters observed on the surface of the sample tested in RG-CO₂
- Clusters reduced significantly for IG sample
- Caused by compositional differences in gas (O₂, N₂, H₂O, Hydrocarbons)
- Phenomena believed to be attributable to Boudouard reaction


Gibbs Free Energy Diagram for Carbon Removal in Carbon Dioxide

- HSC Chemistry used for thermodynamic modeling of Boudouard Reaction
- CO₂ + C → 2CO becomes thermodynamically favorable at 700°C
- Reaction believed to be present in 750°C testing, removing free carbon and thus impacting weight gain as seen in H230 and H625

Graphite Testing

- 750°C graphite samples lost 15 times more weight than samples exposed to 650°C CO₂
- 750°C samples have 6 times the surface roughness than those exposed to 650°C
- Carbon is removed from graphite at a much faster rate at temperatures above 700°C

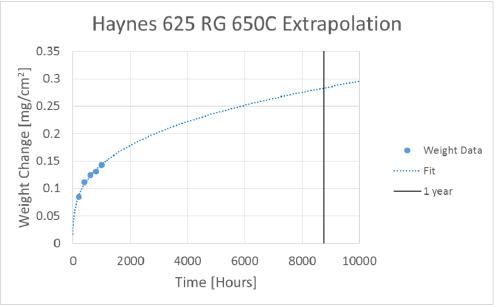
Surface Roughness Measurements [µm]

	Untested Graphite	200 hrs at 650°C	200 hrs at 750°C
Average	0.357	0.648	4.01
St-Dev	0.0808	0.222	1.02
Relative Roughness		1.82	11.2

Untested

200 hours at 750°C

400 hours at 750°C



Extrapolated Weight Gain

 Weight gain data fit using power law to give yearly extrapolated weight gain

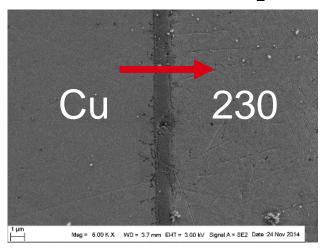
$$W = a \cdot t^n$$

- W = weight change [mg/cm²]
- a = pre-exponential factor
- t = time [hours]
- n = growth parameter

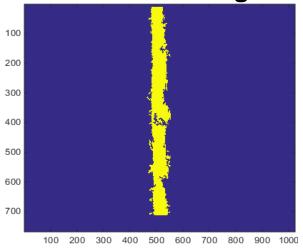
Extrapolated Oxide Thickness

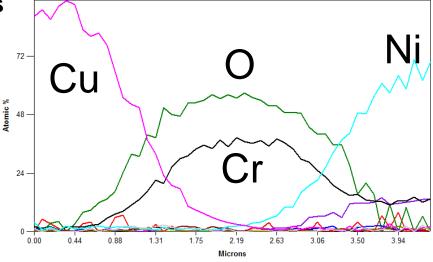
- Method to evaluate oxide thickness of alloys investigated
- Calculation of effective oxide density:

$$Effective\ Oxide\ Density = \frac{Experimental\ Weight\ Change}{Experimental\ Oxide\ Thickness}$$


 Use effective oxide density to calculate extrapolated oxide thickness

$$Extrapolated Thickness = \frac{Extrapolated Weight Gain}{Effective Oxide Density}$$




Effective Oxide Density Calculation

Haynes 230, 650°C RG SC-CO₂, 600 hours

Example:

From Processed Image: $0.799 \pm 0.123 \,\mu m$ Weight Gain of H230: $1.23 \,\mu g/cm^2$ Effective Density of H230: $1.54 \,g/cm^3$

Averaging across all 230 and 625 alloys, Effective Density: 1.79 ± .25 g/cm³

Effective Oxide Thickness for Example: 0.573 µm/year

Effective Oxide Density Discussion

- Chromia assumed to be only numerically significant contributor to oxide weight and thickness
- Calculated effective oxide density much less than that of chromia (1.79 g/cm³ effective vs 5.22 g/cm³ theoretical)
 - Attributable to oxide porosity and cracking
- All alloys satisfied less than 30 [µm/year] at all conditions except IN740 at 750°C IG
 - Data for IN740 at only 750°C IG available through 600 hours, could be power fit artifact
- Further investigations include alloy specific oxide thicknesses

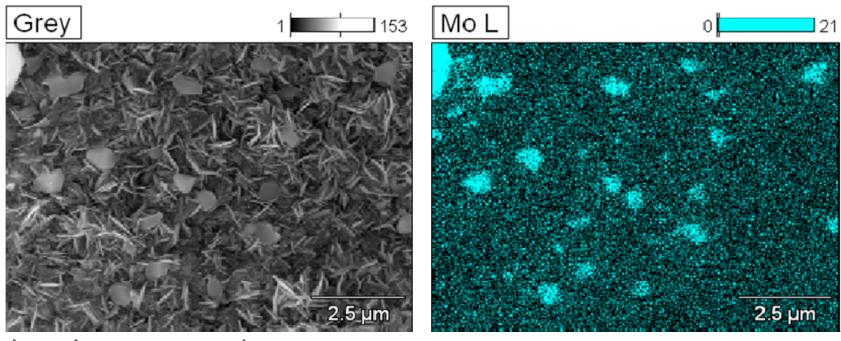
Conclusions

Alloy	Oxide	Surface Features	Weight gain [mg/cm²] 1000 hours 750°C RG	Yearly extrapolated thickness [microns] 750°C RG	Presence of Carbon
H230		Mn/Mo oxide clusters	0.1087*	10.3 at 450°C RG	RG 650°C
H625		Ti/Mn oxide clusters	0.1635*	4.99 at 750°C IG	RG 650°C
H282	Chromia	Ti oxide clusters	0.4837*	10.6 at 750°C RG	RG 650°C
IN740	740 Ti/Mo oxide clusters		0.2863*	89.0 in at 750°C IG	‡
Ni-20Cr		Mo oxide clusters	0.2929*	15.5 in at 750°C RG	‡

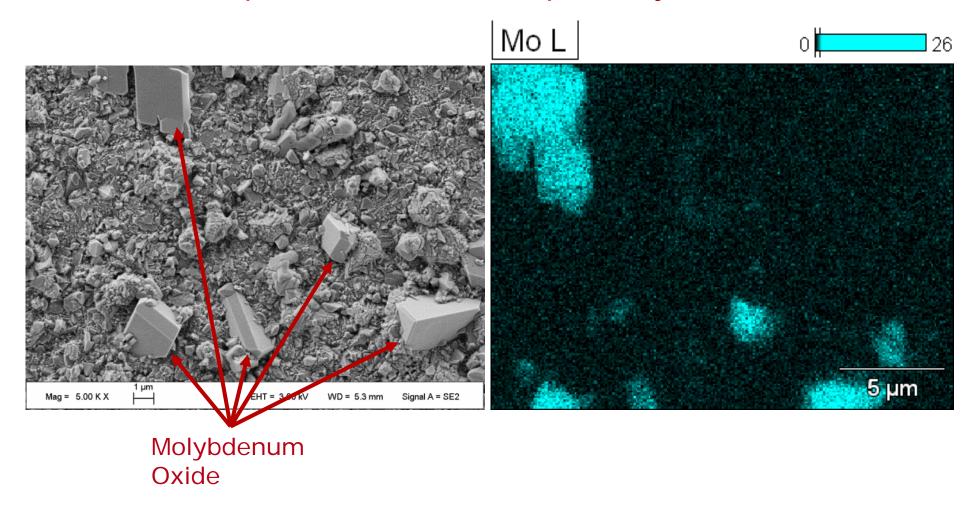
- * No spallation observed on any sample surfaces
- ‡ presence of carbon not tested for in IN740 and Ni-20Cr

Conclusions

Alloy	Oxide	Oxide Features [mg/cm²] 1000 hours 750°C RG		Yearly extrapolated thickness [microns] 750°C RG	Presence of Carbon
H230		Mn/Mo oxide clusters	0.1087*	10.3 at 450°C RG	RG 650°C
H625		Ti/Mn oxide clusters	0.1635*	4.99 at 750°C IG	RG 650°C
H282	Chromia	Ti oxide clusters	0.4837*	10.6 at 750°C RG	RG 650°C
IN740		Ti/Mo oxide clusters	0.2863*	89.0 in at 750°C IG	‡
Ni-20Cr		Mo oxide clusters	0.2929*	15.5 in at 750°C RG	‡


- * No spallation observed on any sample surfaces
- ‡ presence of carbon not tested for in IN740 and Ni-20Cr

Backup Slides


Presence of Molybdenum on Ni-20Cr Alloys Exposed to CO2 at 750°C

Add explanatory text here

310SS (750°C/1000hr) Moly Evidence

Trends observed through weight gains

450°C		H230					H625	
Notes Similar weight change, less than 0.02 mg/cm ² diffe							ce	
550°C				H230	H230		H625	
	Higher weight gain environment			RG-CO ₂		RG-CO ₂		
650°C			H230	H625	H282	IN740		
	Higher we environme	0	RG-CO ₂	RG-CO ₂	RG-CO ₂	RG-CO ₂		
750°C			H230	H625	H282	IN740	Ni-20Cr	
	Higher we environme	0	IG-CO ₂	Similar	RG-CO ₂	RG-CO ₂	RG-CO ₂	
H230 v	H230 vs H625 H230 H625							

Notes Exhibited similar/lesser weight gain at 750°C than 650°C

Research and Industrial Grade CO2 Gas Certificates

Airgas Certificates

	Research Grade CO ₂	Industrial Grade CO ₂
Component	Purity Limits	Purity Limits
CO ₂	99.999%	99.5%
AR+O ₂ +CO	<1 ppm	<50 ppm
Total Hydrocarbons	<1 ppm	<50 ppm
Moisture	<3 ppm	<32 ppm
Nitrogen	<5 ppm	

Isotech Labs Analysis

Research Grade CO ₂			Industrial Grade CO ₂		
Component	Chemical mol. %		Component	Chemical mol. %	
Carbon Monoxide	nd		Carbon Monoxide	nd	
Helium	nd		Helium	nd	
Hydrogen	nd		Hydrogen	nd	
Argon	nd		Argon	nd	
Oxygen	nd		Oxygen	nd	
Nitrogen	nd		Nitrogen	nd	
Carbon Dioxide	100.00		Carbon Dioxide	100.00	
Methane	nd		Methane	nd	
Ethane	nd		Ethane	nd	
Ethylene	nd		Ethylene	nd	
Propane	nd		Propane	nd	
Propylene	nd		Propylene	nd	
Iso-butane	nd		Iso-butane	nd	
N-butane	nd		N-butane	nd	
Iso-pentane	nd		Iso-pentane	nd	
N-pentane	nd		N-pentane	nd	
Hexanes +	nd		Hexanes +	nd	

Trends observed through weight gains

450°C

H230 and H625 exhibited similar weight gains in RG-CO₂ on the order of 0.02 mg/mm2 after 1000 hours of exposure

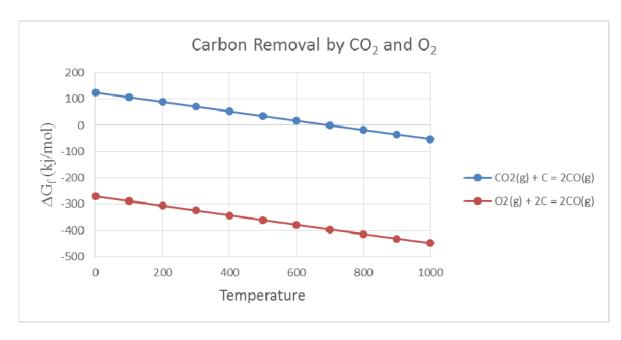
550°C

H230 and H625 exhibited higher weight gains in RG-CO₂ compared to IG-CO₂

650°C

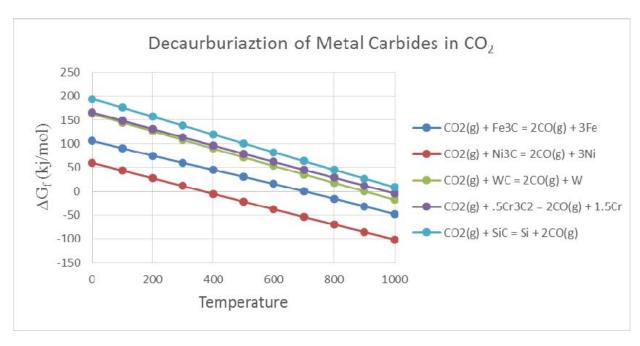
H230, H625, H282, IN740 exhibited higher weight gains in RG-CO₂ compared to IG-CO₂

750°C


- H282, IN740, Ni-20-Cr exhibited higher weight gains in RG-CO₂ compared to IG-CO₂
- H625 exhibited similar weights gains between RG-CO₂ and IG-CO₂
- H230 exhibited lower weight gains in RG-CO₂ compared to IG-CO₂

H230 vs H625

H230 and H625 exhibited similar or lower weight gains at 750°C compared to 650°C for RG-CO₂


Gibbs Free Energy Diagrams for Carbon Removal in Carbon Dioxide and Oxygen

- HSC Chemistry thermodynamics modeling of the Boudouard Reaction
- Both CO₂ and O₂ can react with carbon
 - O₂ + C is a much more favorable reaction
 - CO₂ + C becomes thermodynamically favorable at 700°C

Gibbs Free Energy Diagrams for Carbon Removal in CO2 and Metal Carbides

- Free carbon has been observed to form carbides along grain boundaries
- CO₂ can react with carbides to remove carbon
- Consistent with weight loss in SiC samples