High-Temperature Sapphire Pressure Sensors for Harsh Environments

David Mills¹, Daniel Blood^{1,3}, Harman Singh Bal², Peter Woerner², William Oates², Mark Sheplak¹

¹Interdisciplinary Microsystems Group, University of Florida ²Florida State University ³Valparaiso University

DE-FE0012370 2015 NETL Crosscutting Research Review Meeting April 30, 2015

Outline

- Introduction
- Approach
- Proof-of-Concept Device
- Objectives
- Ultrashort Pulse Laser Micromachining
- Laser Ablation Modeling
- Conclusions

Project Overview

- Focus: Development of novel fabrication methods for the synthesis of high-temperature sapphire optical pressure sensors
- Award information
 - Project title: "High-temperature sapphire pressure sensors for harsh environments"
 - Award #: DE-FE0012370
 - Program manager: Sydni Credle
 - Duration: 3 years, beginning Jan 2014
- Project team
 - UF (Project lead)
 - FSU

Motivation

- Development and implementation of advanced energy systems will require novel harsh environment sensors and instrumentation for:
 - Advanced process control/closed loop feedback systems
 - Increased efficiency
 - Reduced emissions & cost
- Applications
 - Coal gasification
 - Advanced gas turbine systems
 - Solid oxide fuel cells
 - Deep oil and geothermal drilling

Motivation

- Sensor operational requirements
 - Temperature: >1000°C
 - Dynamic pressure: up to 1000 psi
 - Atmosphere: corrosive and/or erosive
- Conventional pressure sensor instrumentation is limited to ~500°C
- Temperature mitigation techniques:
 - Stand-off tubes cause signal attenuation and degradation
 - Water cooling imparts unknown aerothermal effects on the surrounding flow

Approach

- Transduction mechanisms
 - Capacitive

- Piezoelectric
- Piezoresistive
- Benefits of fiber optic transduction
 - DC measurement
 - Immunity to EMI
 - Passive
 - Non-conductive
 - Remote electronics
 - Multiplexing

Approach

• Sensor/optical fiber materials

Silicon carbide

- Diamond
- Benefits of sapphire
 - High melting point (2053°C)
 - Resistance to chemical corrosion
 - Excellent hardness
 - Large transmission window (200 nm 5 μ m)
 - Multimode optical fibers & substrates available

Approach

• Common fiber optic measurement techniques

Proof-of-Concept Device

- Diaphragm
 - 8 mm diameter, 50 µm thick
 - Platinum reflective surface
 - Thermocompression bonded to back cavity
- Configuration
 - Single send/receive fiber
 - Sapphire/silica fiber connection
 - Reference photodiode

D. Mills et al, Proc. SPIE, vol. 9113, Apr 2014

Proof-of-Concept Device

- Performance issues
 - High stiffness low sensitivity
 - Large residual stress (~300 MPa) resulted in buckled diaphragm
- Improvements
 - Sensitivity utilize ultrashort pulse laser micromachining to fabricate thinner diaphragm structures

 Residual stress – improve thermocompression bond process through additional testing and characterization of bond interface

Technical Objectives

- Implement novel sapphire fabrication processes for fabrication of 3-dimensional structures
 - Subtractive machining: ultrashort pulse laser micromachining
 - Additive manufacturing: thermocompression bonding via spark plasma sintering (SPS) technology
- Characterize and mitigate thermo-mechanical damage imparted by manufacturing processes via statistical modeling of laser pulse-material interactions
- Fabricate, package, calibrate, and demonstrate in the field a high-temperature sapphire dynamic pressure capable of operation up to 1000°C and 1000 psi

Technical Objectives

• Phase I

- Laser machining process development
- SPS thermocompression bonding process development
- Laser machining thermal damage modeling & analysis
- Phase II
 - Sensor design & fabrication
 - High-temperature packaging
- Phase III
 - Room- and high-temperature characterization
 - Hot jet testing

Outline

- Introduction
- Approach
- Proof-of-Concept Device
- Objectives
- Ultrashort Pulse Laser Micromachining
- Laser Ablation Modeling
- Conclusions

Pulsed Laser Micromachining

Long Pulsewidths

- Ultrashort pulse laser micromachining
 - Classification based on relation between thermal diffusion depth, d, and optical penetration depth, δ

$$d = 2\sqrt{at}$$
 $\delta = \frac{2}{\alpha}$

- $d < \delta$, material removal is dominated by photochemical processes and is considered ultrashort

Pulsed Laser Micromachining

- Oxford Lasers Micromachining Station
 - Laser: Coherent Talisker Ultra (DPSS)
 - Pulse duration: 10-15 ps nominally
 - Wavelength: 355 nm
 - Beam diameter: 8.8 µm
 - Max output: 4 W at laser head (20 µJ pulse energy)
 - Beam attenuator from 0 -100%
 - Pulse frequency: up to 200 kHz
- For sapphire,

```
δ ≈ 72.4 µm
```

d ≈ 24.4 nm

10ps pulse is considered ultrashort

Pulsed Laser Micromachining

• Four key machining parameters of interest:

2. Pulse Repetition Rate (Hz)

4. Cut Passes – Number of times the cut path is repeated

Gentle vs. Strong Ablation

- Transition from gentle to strong ablation is dependent on the number of laser pulses in a given area and the laser fluence
- Machining parameters
 - Feature size: 400 μm x 250 μm
 - Laser fluence: $1.2 21.5 \text{ J/cm}^2$
 - Number of passes: 1-50
- Linear fits to gentle (blue) and strong (red) ablation regimes
- Threshold laser fluence: ~1 J/cm²

Gentle vs. Strong Ablation

Gentle vs. Strong Ablation

Sidewall Angle

- Machining parameters
 - Fluence: 5.1-25.5 J/cm²
 - Pulse area overlap: 45-99%
 - Number of passes: 50-2000
- Sidewall angle is constant above ~75% pulse area overlap
- Higher fluence and number of passes reduce sidewall angle

Laser Machining Simulation

- User inputs
 - Cut program (G code)
 - Process parameters
 - Laser station settings

- Program outputs
 - Results table
 - 2D and 3D simulated depth of cut plots
 - 2D velocity plot
 - Input feedrate vs machining time plot

Laser Machining Simulation

Part Path Modification

- Test geometry overlapping rectangles
 - Creates deeper machined region
 - Goal: add passes in specific areas to create a single region of consistent depth

Part Path Modification Results

• Additional passes in region of single overlap improves the depth uniformity

150

200

250

 Good agreement with simulation including capture of periodic structures in the machined recess

Outline

- Introduction
- Approach
- Proof-of-Concept Device
- Objectives
- Ultrashort Pulse Laser Micromachining
- Laser Ablation Modeling
- Conclusions

Laser Ablation Modeling

- Material physics modeling of laser ablation
 - 1. Laser input: time dependent Maxwell's equations
 - 2. Material evolution: electronic structure balance equation

Laser Ablation Modeling

- One dimensional model approximation
 - Scalar order parameter governing electron density

$$\rho(x,t) = \sum_{\alpha} \sqrt{y_i^{\alpha}(x,t)y_i^{\alpha}(x,t)}$$

- Balance law governing $\rho(x,t)$ obtained from minimization of energy functions
- Leads to a phase field or sharp interface model driven by electric field (laser) pulses
- Key governing equations

Multi-well energy

$$\sigma(\rho)\mu_0 \frac{\partial E}{\partial t} = \nabla^2 E$$

Electromagnetic equation

$$\beta(E)\frac{\partial\rho}{\partial t} = a_0 \nabla^2 \rho - \frac{\partial \psi}{\partial \rho} - \gamma(E)$$

Phase field based order parameter model

Model Validation

- Ablation of material predicted as a function of picosecond pulsed laser excitation
- Laser intensity dependence model parameters identified via Bayesian statistics

*Daniel Blood, "Simulation, Part Path Correction, and Automated Process Parameter Selection for Ultrashort Pulsed Laser Micromachining of Sapphire", University of Florida, PhD Thesis, directed by Profs. M. Sheplak & T. Schmitz, 2014.

Model Analysis – Parameter Sensitivity

Model Analysis – Uncertainty Quantification

- Bayesian statistics applied to quantify reduced order model uncertainty
 - Kinetic parameter (β) found to increase approximately linearly with picosecond pulsed laser intensity
 - Illustrated in terms of the probability of $\boldsymbol{\beta}$ given a machined depth

*Daniel Blood, "Simulation, Part Path Correction, and Automated Process Parameter Selection for Ultrashort Pulsed Laser Micromachining of Sapphire", University of Florida, PhD Thesis, directed by Profs. M. Sheplak & T. Schmitz, 2014.

Outline

- Introduction
- Approach
- Proof-of-Concept Device
- Objectives
- Ultrashort Pulse Laser Micromachining
- Laser Ablation Modeling
- Conclusions

Summary

- Laser machining process for the sapphire-UF laser system characterized
- Simulator developed and validated based on empirical data
- Laser ablation model developed
 - Coupling among laser exciation and electronic structure evolution
 - Uncertainty and sensitivity analysis conducted on a reduced order model approximation
 - Parameter dependence on laser intensity identified

Future Work

- Quantification of laser damage via four point bend testing at elevated temperatures
- Extension of the laser ablation model to include effects of sub-surface laser damage on strength and fracture
- Fabricate high-temperature plane wave tube for dynamic pressure calibration
- Sensor fabrication
- High-temperature package development
- Packaged sensor calibration & hot jet testing

Questions?

