InnoSepra

Lab and Bench-Scale Testing of CO₂ Capture Using Physical Sorbents Funded by DE-FE-0007948 and DE-SC-0010208 Ravi Jain, InnoSepra LLC, Middlesex NJ 08846

Executive Summary

- Physical sorption to produce dry CO₂ at high purity (>98%) and high recovery (>90%) from the flue gas
- An impurities removal stage followed by a CO₂ adsorption stage
 - Both the stages have been extensively tested in the lab and in the field (up to 100 scfm flue gas flow) for over 6 years
- Potential for more than 40% reduction in the capital and more than 40% reduction in parasitic power for CO₂ capture compared to MEA
- The estimated total energy required, excluding compression, is 450-500 kcal/kg of CO₂
 - Potential to provide CO₂ at a cost (<\$40/ton) and quality (<1 ppm H₂O, <1 ppm SO_X, <10 ppm O₂) suitable for EOR applications
- The DOE projects addressed various process risks and scale up issues through lab and field testing, process simulation, and techno-economic evaluation

Lab and Field Testing Summary

Lab testing for initial adsorbent screening

- >90% CO₂ recovery, >99% CO₂ purity, 7-9 wt% net CO₂ capacity (~15% CO₂ in the feed)
- Same or higher CO₂ purity and recovery as reactive sorbents

The bench unit testing at NRG's Indian River, DE plant

- The feed to bench unit saturated at 60°C, about 50 ppm SO₂, and 10-12% CO₂
- Eight weeks of testing with 22-32°C feed temperature, 80-100 scfm flue gas flow

Field performance better than the lab performance

- 8-10.5 wt% net CO₂ capacity in the field
- >94% CO₂ recovery, 98.5-99.5% CO₂ purity

Process Overview

Skid Layout

Heating and Cooling Skid

- Flue gas pretreatment to remove moisture and SO_X to < 1 ppm each, adsorption at 25-40°C and regeneration at ~100°C
- High purity CO₂ (>98% purity, <10 ppm O₂) at >90% recovery
- The key innovation is the combination of process and materials (physical sorbents) that provides performance similar to or better than reactive systems with a much lower energy penalty

Adsorption Skid

Techno-Economic Analysis (550 MMW SCPC Plant, 2012 Basis)

Estimated Capital Cost	\$388 MM
Power consumption including compression	99 MW
Steam cost with capture (per 1,000 lbs)*	\$8.60
	(+47%)
Electricity cost with capture*	\$0.095/kWh (+48%)
CO ₂ production rate, million tons/yr	3.5
CO ₂ Recovery Cost**	\$46/ton
*Based on the DE-EOA-0000403 quidelines	

*Based on the DE-FOA-0000403 guidelines **85% plant utilization factor. Includes capital charge, power,

maintenance, and transportation cost

Comparison with MEA (2011 Cost Basis, Case 12)

- 44% lower capital compared to MEA excluding the CO₂ compressor
- 38% lower capital including the CO₂ compressor
- 18% parasitic power load compared to 28% parasitic power load for MEA

Potential Approaches for Further Cost Reduction

- The DOE bench scale project used particulate adsorbents which can be
 - Subject to fluidization, attrition and higher pressure drop
- The DOE SBIR project is looking at structured sorbents which are
 - Not subject to fluidization, attrition and have a significantly lower pressure drop
 - The key goals for the project are
 - Adsorption isotherms, process simulation and engineering design for CO₂ capture based on monoliths
 - Quantify benefits over MEA as well as with InnoSepra's process using particulate adsorbents with a detailed techno-economic analysis
- The key benefits include
 - Lower pressure drop, faster cycling and lower skid and shipping cost can overcome the higher cost of structured adsorbents
 - Potential for up to 10% reduction in CO₂ capture cost compared to particulate adsorbents

Key Tasks for the Structured Adsorbent Project

- Vendor fabrication of sorbent modules
- Equipment modification and moisture removal testing
- Sorption isotherms and CO₂ capture testing
- Process simulation and engineering design
- Techno-economic analysis

Accomplishments So Far

- Structured sorbents for flue gas purification and CO₂ capture fabricated
- Breakthrough capacities determined in bed sizes up to 3" diameter

Lab Unit for Adsorbent Testing

- Capacities comparable to particulate adsorbents, much lower pressure drop (<1/5th)
- Process modeling and preliminary TEA indicating potential for CO₂ capture cost reduction

Overall Accomplishments

- The InnoSepra CO₂ capture process combines several innovative features to reduce the capital cost and parasitic power for CO₂ capture
- It is possible to obtain very high recovery (>90%), and high purity (>99%) CO₂ with physical sorbents while meeting the EOR/sequestration oxygen specification
 - ∆H_{ads}<200 Kcal/kg, parasitic power <500 Kcal/ kg
 - High net CO₂ capacity (>8 wt%)
 - <1 ppm each of SO_X and H₂O, 10-30 ppm O₂ in product CO₂
- The capital cost and parasitic power estimates based on a detailed component level analysis indicate that we are close to DOE's LCOE target (<35% increase) and the CO₂ cost target (<\$40/ ton)
- Possible to obtain a CO₂ product suitable for EOR and sequestration
- Potential for further cost reduction through the use of structured sorbents