Advanced Manufacturing To Enable New Solvents and Processes For Carbon Capture

June 25, 2015 NETL CO_2 Capture Technology Meeting

Joshuah K. Stolaroff

Lawrence Livermore National Laboratory

Carnegie Mellon University

HARVARD UNIVERSITY

LLNL-PRES-555917

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

New fabrication techniques can enable new materials and processes to achieve low-cost carbon capture.

FEW0194: Advanced Manufacturing To Enable Enhanced Processes And New Solvents For Carbon Capture
\$4.15M over 3 years (April 15, 2015 – April 14, 2018)

CO₂ absorber design with advanced manufacturing \$250k/yr Rapid determination of solvent properties via microfluidic reactors \$133k/yr **Objective:** enable solvent-based transformational carbon capture using advanced manufacturing techniques.

Identify and refine a suitable process configuration for Microencapsulated CO₂ sorbents (MECS).

Identify improvements to absorbers enabled by advanced manufacturing. Determine properties of candidate solvents via microfluidic techniques.

Project Team

Joshuah K. Stolaroff, John J. Vericella, Sarah E. Baker, Eric B. Duoss, Cheng Zhu, William L. Smith, James S. Oakdale, Bill Bourcier, Christopher M. Spadaccini, and Roger D. Aines

Carnegie Mellon University

John Kitchen

Collaborators

Alissa Park

Advanced solvents have some common advantages:

- Lower energy of regeneration
- Low volatility
- Tunability for innovative processes

...and common problems:

- High viscosity
- Water intolerance
- Phase changes
- Slow heat transfer or mass transfer
- High solvent cost

Some solvents with potential for 30—50% energy savings and specific challenges:

1. Sodium carbonate solution: slow CO_2 absorption, precipitates solids.

2. **Ionic Liquids**: water intolerance, precipitate solids (PCIL's).

3. **NOHMs**: high viscosity, slow CO_2 absorption.

4. **CO₂BOLs**: poor heat transfer rates (high viscosity).

 \rightarrow How can advanced manufacturing help?

Advanced Manufacturing:

a suite of fabrication techniques characterized by:

- additively assembled parts
- micro- or nano-scale control over structures (micro-architecture)
- micro- or nano-scale assembly of multiple components
- computational or analytical design directly input to the fabrication technique

Some additive manufacturing techniques under development at LLNL

Direct Ink Writing (DIW)

Utilizes unique flow and gelling properties

Some additive manufacturing techniques under development at LLNL

Projection Microstereolithography (PµSL)

A photochemical and optical technique

Electrophoretic Deposition (EPD)

Electric fields transport nanoparticles

Direct Ink Writing (DIW)

Utilizes flow and gelling properties

Microencapsulation: double emulsions are produced in a microfluidic device...

- Control of capsule diameter and shell thickness.
- Encapsulates ~100% of inner fluid
- Core fluid can also have solids
- Production rate: 1-100 Hz

...and then cured with UV light.

Micro-encapsulated Carbon Sorbents (MECS): Liquid solvents or slurries encased in thin, permeable polymer shells

Microencapsulation enhances kinetics.

Microencapsulation enhances kinetics.

Microencapsulation enables mixed phases and viscous solvents.

30 wt% Na_2CO_3 capsules exposed to CO_2 precipitating Nacholite \rightarrow

Encapsulating slurry of glass bubbles

Microencapsulation enables mixed phases and viscous solvents.

30 wt% Na_2CO_3 capsules exposed to CO_2 precipitating Nacholite \rightarrow

Encapsulating slurry of glass bubbles

Microcapsules with semcosil shell and 30 wt% sodium carbonate core

0.5 mm

Time: 480min

Encapsulation increases capture rate of carbonates by 10x compared to same volume of liquid.

Process options same as for solids:

- Fluidized bed
- Moving Bed
- Fixed bed

Thermally regenerable for many cycles (80 tested).

Challenges and planned work

Challenge: Capsule Production Scale-up

- Bulk emulsion methods exist, but yield a distribution of capsule properties.
- Two microfluidic production methods being pursued.

Etched glass chips from Dolomite Microfluidics

Tandem-Step chips developed at Harvard

Some success with 1st-generation multichannel chips

Two 4-channel chips producing capsules in parallel.

Scale-up alternative: Tandem Step Emulsification

Tandem Step Emulsification (Oil in Water)

Challenge: capsule curing in the presence of amines

Current shell material: Semicosil 949UV, Wacker Chemie AG

- Propriety silicone rubber blend (likely polydimethyl siloxane; PDMS)
- UV curable (likely UV-activated cross-linking through hydrosilation chemistry)

Challenge: determine solvent properties from small sample volumes.

Microfluidic characterization of CO₂ absorption solvents

- Image analysis of gas bubble size vs channel distance provides uptake data
- Different solvents show different capture performance

Raman spectroscopy characterization of amino acid solvent CO_2 capture

- Raman spectroscopy can identify carbamate, bicarbonate, and carbonate species
- We see disappearance of reactants and formation of products

Potassium lysinate before and after CO₂ capture

Improving absorber packings

Core-shell Direct Ink Write

→better surface area-to-volume and faster reaction in absorbers

Acknowledgements

Lynn Brickett Andy Aurelio

Questions