

Direct Hydrocarbon Fuel Cell – Battery Hybrid Electrochemical Device

Project PI: Masaru Tsuchiya Co-PIs: Prof Shriram Ramanathan and Prof Cynthia Friend

About SiEnergy Systems

- SiEnergy was formed in 2007 by Allied Minds (LSE: ALM), an innovative U.S. science and technology development and commercialization company.
- The technology was originally based on the research of Professor Ramanathan of Harvard University.
- In the period from 2007 to 2010, SiEnergy worked through an SRA with Harvard.
- Scalability of core technology (ultra-thin film SOFC) was demonstrated in 2010.
- SiEnergy moved to its own facility in Cambridge in 2011, and expanded R&D team in 2012.
- ARPA-E REBELS program to develop dual-mode device started in 2014.

Ultra-thin film SOFC Platform to demonstrate fuel cell at 300-500 °C

- Area specific resistance (ASR) of 50 nm YSZ is only 0.005 Ω cm² at 500 °C.
- Thin film YSZ is often required for new electrolyte materials as blocking layer.
 → Nanoscale YSZ provides the lowest practically achievable resistance for 300-500 °C.

Key advantage of thin-film deposition for SOFC fabrication

Ease of integration of dissimilar materials (i.e., flexible materials selection)

B. K. Lai, S. Ramanathan *et al.*, J. Power Sources, **195**, 5185 (2010).
K. Kerman, S. Ramanathan *et al.*, ACS Nano, **7**(12), 10895 (2013).

Technology Overview

Key novelties of the proposed project

- *In-situ* charge storage in anode to enable battery-like transient response
 - Transition metal oxide and/or metal hydride to store hydrogen
- Direct hydrocarbon operation to avoid the use of fuel processing units
 - Carbide catalyst to activate C-H bond at low temperature

<u>828282828288</u>

In-situ charge storage in anode

Possible mechanisms for in-situ charge storage

- So far, *in-situ* storage was observed in a few transition metal oxides.
- The most likely mechanisms for the in-situ storage are the following.
 - Cation valence oxidation (such as VO_2/V_2O_5)
 - Hydrogen storage (Hydrides with H/V ratio 0.3-1.2 were reported)

Battery-like response in VO₂ film

- Testing was performed at 300 °C using ultra-thin film YSZ platform.
- V⁴⁺ to V⁵⁺ transition observed in vanadia film after battery mode operation.
- Energy density was 20-100 mJ/cm² (0.005-0.02 Wh/cm²) tested at 0.1-10 mA/cm².

Hydrogen intercalation in SmNiO₃ thin film

Resistivity and optical properties of perovskite oxide (nickelate) can be tuned by several orders of magnitude by doping hydrogen.

Direct hydrocarbon operation at 300-500°C with carbide catalyst

Transition metal carbide catalyst for direct hydrocarbon oxidation at 300-500°C

Catalyst development is necessary to operate SOFCs with hydrocarbon fuels at 300-500 °C

- Steam reforming is not favorable below 650 °C.
- Coking is a major challenge with Nickel catalyst.

Transition Metal Carbide Catalyst

- Catalytic properties similar to Pt-group metals.^[1]
- High electronic conductivity comparable to metals.
- Resistant to coarsening due to very high melting point (e.g., WC: 2870 °C).
- Resistant to coking demonstrated in direct methane SOFC.^[2]

Structure of carbides (bulk and thin film)

S. T. Oyama, Catalysis Today, **15**, 179-200 (1992).
 Jansson *et al.*, Thin Solid Films, **536**, 1 (2013).

[3] Weigert et al., J. Vac. Sci. Tech A, 26,23 (2008).
[4] Kurlov and Gusev, Inorg Mater, 42(2), 121 (2006).

Thin film WC is nonstoichiometric (WC_{1-x})

- WC thin films prepared at 150 W, 10 mtorr and room temperature were found to be mainly (111) oriented WC_{1-x} (PDF 00-020-1316);
- W4f and C 1s confirm WC's existence;

Composition of WC is very sensitive to the growth conditions

- W-C intensity increases with deposition temperature, while decrease with deposition pressure;
- W-O intensity increase with deposition pressure;

Challenges in using carbide in CH₄

WC was annealed in pure CH_4 under 500 °C for 4 h

- Unlike noble metal or oxide anodes, oxidation is a key challenge to use of WC as anode;
- The possible oxide products include WO_2 , WO_3 , and $W_{18}O_{49}$;
- Doping, and control of defects and interfaces can mitigate these issues.

Summary

- Nanoscale thin film electrolyte is an excellent platform to lower the operating temperature of solid oxide fuel cells down to 300-500 °C.
- *In-situ* charge storage in anode was demonstrated by integrating transition metal oxide in anode.
- Transition metal carbide catalyst has been investigated as a catalyst to activate C-H bond at below 650 °C.

Acknowledgements

• Co-Pls:

Prof. Shriram Ramanathan, Prof. Cynthia Friend

• Harvard Team

Jun Jiang, Xiaofei Guan, and Judith Lattimer

SiEnergy Team

Atul Verma, Neil Simrick, Zhuhua Cai, Zakiul Kabir, and Vincent Chun

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency - Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000491