Mitigation of Cr impurity Effects

Srikanth Gopalan, Soumendra Basu, Uday Pal, and Emily Ryan Department of Mechanical Engineering and Division of Materials Science and Engineering &

> Hossein Ghezel-Ayagh Fuel Cell Energy

Outline

- Project objectives
- Recap of Cr poisoning mechanisms
- Role of thermodynamics and reactive transport
- Summary of ongoing work
- EPD coatings

Objectives of the project

- Systematic approach to understanding the role of thermodynamics, reactive transport leading to formation of Cr-containing reaction products, and the cell and stack operating conditions, namely, temperature, cathode gas composition, and current density.
- To propose and demonstrate solutions to mitigate or eliminate the formation of deleterious phases that are rationally based in thermodynamics, kinetics, and transport.

Mechanisms of Cr poisoning

• Hilpert et al.

 $\circ Cr_2 O_3(s) + \frac{3}{2} O_2 \rightarrow 2CrO_3(g)$ (dry conditions) $\circ Cr_2 O_3(s) + \frac{3}{2} O_2 + 2H_2 O \rightarrow 2CrO_2(OH)_2(g)$ (humid conditions)

- Electrochemical reaction at cathode:
 - $2CrO_2(OH)_2(g) + 6e' + 3V_0^{"} \rightarrow Cr_2O_3(s) + 3O_0^X + 2H_2O(g)$
 - $2CrO_3(g) + 6e' + 3V_0^{"} \rightarrow Cr_2O_3(s) + 3O_0^X$

Mechanisms of Cr poisoning

- Cr in the gas phase and Mn in the LSM react directly to form Cr₂O₃ and eventually a manganese spinel, (Cr,Mn)₃O₄. The Cr₂O₃ and spinel phases that form block the transport of oxygen to the TPBs thereby decreasing the oxygen partial pressure.
- The reduced oxygen partial pressure further drives the reaction of spinel formation.

The Role of Thermodynamics

• Current density and oxygen transport in the cathode determine the oxygen partial pressure distribution, and in particular the oxygen partial pressure at the cathode/electrolyte interface.

$$pO_2(c) = pO_2^0 \exp\left[-\frac{4F\eta_c}{RT}\right]$$

Introduction: The Role of Thermodynamics

 Different compounds can form depending on the temperature and local oxygen partial pressure

Perovskite cathodes	Product	More stable at		
		p(O₂) (Low<0.01 atm <high)< td=""><td>Temperature (Low<1000K<high)< td=""></high)<></td></high)<>	Temperature (Low<1000K <high)< td=""></high)<>	
(La _{0.8} Sr _{0.2})MnO ₃	p(La _{0.67} MnO ₃)	NA	Low	
	p(LaMnO₃)	Both (slightly low preferred)	High	
	p(SrMnO₃)	NA	High	
	p(LaCrO ₃)	High	High	
	SrCrO ₄	NA	Low	
	La ₂ CrO ₆	NA	Low	
	α-SrMnO₃	NA	Low	
	p(SrMnO _{2.5})	Low	High	
	p(SrCrO ₃)	High	High	
	Mn ₃ O ₄	Low	High	
	MnCr ₂ O ₄	Low	NA	
(La0.8Sr0.2)FeO3	p(LaFeO ₃)	Both	Both	
	p(SrFeO2.5)	Low	High	
	p(LaCrO ₃)	Low	High	
	Fe ₂ O ₃	NA	High	
	SrCrO ₃	Mid-range	High	
	SrFe ₁₂ O ₁₉	Both	Both	
	SrCrO ₄	High	Low	
La(Ni _{0.6} Fe _{0.4})O₃	p(LaNiO₃)	High	Both	
	p(LaFeO ₃)	Both	Both	
	NiO	Low	High	
	La ₂ NiO ₄	NA	High	
	p(LaCrO ₃)	Both	Both	
	La ₄ Ni ₃ O ₁₀	Low	High	

Summary of project tasks and overview of ongoing work

- Electrochemically testing symmetrical and full cells with exposure to Cr₂O₃ in a dry and humid atmosphere as a function of pH₂O (cathode), temperature, cathode microstructure, thickness, and current density.
- Microstructural and TEM/FIB analysis of tested cross-sections.
- Mapping of reaction products with pH₂O (cathode), temperature and current density.
- Computational modeling.
- Development of protective coatings

Schematic of electrochemical cell

SEM image of cathode cross section (1200°C)

Computational Investigations of Chromium Poisoning

Pore-Scale Reactive Transport Model

- Develop a small scale model of reactive transport in the porous cathode
- Model will resolve cathode micro-structure
- Formulate a damage factor to include Cr poisoning in full cell performance model

BU Approach to Protective Coatings using EPD

Requirements of Protective Coatings

- Adherence with the substrate
- Stability (Thermodynamic & Thermomechanical)
- High electronic conductivity
- Low oxygen ion conductivity
- Spallation resistance (thermal cyclability)

Prior Candidates and Application Methods

- A number of spinel and perovskite coatings e.g. (Mn,Co)₃O₄, (Mn,Cr)₃O₄, La_{1-x}Sr_xMnO₃, LaMn_{0.9}Ti_{0.1}O₃, La_{1-x}Sr_xCrO₃ etc.
- Atmospheric plasma spray (APS), aerosol deposition followed by sintering, sputtering, PVD etc.
- Principle issues have been adhesion to substrate, high density of coatings, and spallation of coatings after long term operation of cells.

BU Approach

 Using a cost effective process-Electrophoretic Deposition (EPD) to apply a dense CuMn_{1.8}O₄ spinel oxide on Crofer 22 APU to reduce the oxidation of the alloy, minimize chromium transport and attack, and maintain a low interfacial resistance

Properties of CuMn_{1.8}O₄ Spinel

• Electrical conductivity of CuMn_{1.8}O₄ at 800 C is around 100S/cm

Material	Thermal expansion coefficient /K		
CuMn _{1.8} O ₄	12.2 x 10 ⁻⁶		
Crofer 22 APU	12.0 x 10 ⁻⁶		
LSM	12.0 x 10 ⁻⁶		
YSZ	11.0 x 10 ⁻⁶		

Electrophoretic Deposition Schematic

Coating Process

XRD of Coated and Uncoated Crofer 22 APU

(a)As-deposited CuMn_{1.8}O₄ coating sample,
(b)Coated sample after 800c 100h annealing
(c)Coated sample (b) after 800C 100h isothermal oxidation
(d)Uncoated sample after 800C 200h isothermal oxidation

Cross-Sectional SEM of Coated Sample

Weight Gain of Uncoated and Coated Samples

Oxidation Rate Parameters for Uncoated and Coated Samples

	Oxidation temperature (°C)	k g (g ² cm ⁻⁴ s ⁻¹)	k _p (μm h ^{-1/2})	Oxide thickness after 50000 h (µm)
Uncoated Crofer	800	8.3 x 10 ⁻¹⁴	10.51 x 10 ⁻²	23.5
22 APU	750	4.5 x 10 ⁻¹⁵	2.45 x 10 ⁻²	5.5
Coated Crofer 22	800	6.1 x 10 ⁻¹⁵	2.87 x 10 ⁻²	6.4
APU	750	6.25 x 10 ⁻¹⁶	1.06 x 10 ⁻²	2.4

$$k_p = 6 \times 10^5 \left[\frac{MW_{Cr_2O_3}}{(3/2)MW_{O_2}} \frac{1}{\rho_{Cr_2O_3}} \right] \sqrt{k_g}$$

Elemental Distribution Map of Uncoated Sample after 800 °C, 120 h Isothermal Oxidation

Elemental Distribution Map of Coated Sample after 800 °C, 120 h Isothermal Oxidation

Schematic structure of oxide layer

(a) Uncoated Crofer 22 APU (b) Coated Crofer 22 APU

Transport Model – Converting flux equations to rate of oxide layer growth

Flux due to chemical and electrostatic potential gradients:

$$Z_{Cr^{3+}} j_{Cr^{3+}} + Z_{O^{2-}} j_{O^{2-}} + Z_n j_n = 0$$

Combining:

$$\frac{d\Phi}{dx} = \frac{1}{6} \left[\frac{3\sigma_{O^{2-}}}{\frac{d\mu_{O^{2-}}}{dx} + 6\sigma_n \frac{d\mu_n}{dx} - 2\sigma_{Cr^{3+}}}{F(\sigma_{O^{2-}} + \sigma_{Cr^{3+}} + \sigma_n)} \right]$$

$$\frac{d\delta}{dt}\frac{1}{D}dx = d\ln(pO_2)$$

dx

Transport Model – Converting flux equations to rate of oxide layer growth

$$2\text{Cr} + 3/2\text{O}_2 \rightarrow \text{Cr}_2\text{O}_3$$

 $\Delta G = -1,120,300 + 260T \text{ J mol}^{-1} \text{ K}^{-1}$

 pO_2 at alloy/ Cr_2O_3 interface can be calculated from the above data and used in integrating oxide layer growth rate equation

$$\frac{d\delta_2}{dt} = \frac{\Delta \ln(pO_2)}{\frac{\delta_1}{D_1} + \frac{\delta_2}{D_2}} = \frac{a}{b + \delta_2} \qquad a = D_2 \Delta \ln(pO_2) \text{ and } b = \delta_1 D_2 / D_1$$
$$\frac{\delta_2}{\frac{\delta_2}{2\Delta \ln(pO_2)} \frac{D_2}{\delta_2}} + \frac{\delta_2}{\Delta \ln(pO_2) \frac{D_1}{\delta_1}} = t + \tau$$

- Initial stage scale thickness small; growth rate dominated by transport through coating, linear kinetics
- Later stage scale thickness large; growth rate dominated by transport through scale, parabolic kinetics.
- Intermediate stage transition regime, paralinear kinetics

Data Analysis

	Oxidation temperature (C)	K_g (g ² /cm ⁴ s)	D_I (cm ² /s)	D_2 (cm ² /s)	Total oxide thickness (µm)
Uncoated Crofer 22 APU	800	6.67X10 ⁻¹⁴	NA	2.5X10 ⁻¹⁶	1.1
	750	3.64X10 ⁻¹⁵	NA	1.6X10 ⁻¹⁷	0.55
Coated Crofer 22 APU	800	NA	2.0X10 ⁻¹⁵	2.5X10 ⁻¹⁶	0.7
	750	NA	5.0X10 ⁻¹⁶	1.6X10 ⁻¹⁷	0.25

 δ_1/D_1 and δ_2/D_2 are the contributions of diffusion resistances from coating and scale

Based on our analysis of the data:

Equal contributions from coating and scale occurs at 850 h at 800°C Equal contributions from coating and scale occurs at 100 h at 750°C

Our measurements at both temperatures were for 120 h. Thus 800°C data follow linear kinetics and 750°C data follow paralinear kinetics

Schematic of ASR measurement setup

ASR as a function of temperature for the various samples

Predicted long time ASR

	temperature (°C)	Oxide thickness after 50000 h	Resistivity of Cr ₂ O ₃ (mΩcm)*	ASR after 50000 h (mΩcm²)
		(µm)		
Coated Crofer 22 APU	800	6.4	1.7x10 ⁴	11
	750	2.4	2x10 ⁴	4.8

* W. Qu, etc, J. Power Sources, 153(1), 114 (2006)

Target Interconnect ASR $\leq 100 m \Omega cm^2$

Future work on coatings

- Other materials compositions to be explored through EPD technique
- Transport in newer coating materials can be altered by suitable doping strategies and engineering the point defect structure

Acknowledgments

- DOE personnel -- Steven Markovich, Rin Burke, Shailesh Vora
- Wenhua Huang Former graduate student (EPD coatings work)