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Objectives of the project

e Systematic approach to understanding the role of thermodynamics,
reactive transport leading to formation of Cr-containing reaction
products, and the cell and stack operating conditions, namely,
temperature, cathode gas composition, and current density.

e To propose and demonstrate solutions to mitigate or eliminate the
formation of deleterious phases that are rationally based in
thermodynamics, kinetics, and transport.



Mechanisms of Cr poisoning

e Hilpert et al.
0Cr,05(s) +3/5,0, - 2Cr03(g) (dry conditions)
0Cr,05(s) +3/5,0, + 2H,0 - 2Cr0,(0H),(g) (humid conditions)

e Electrochemical reaction at cathode:
« 2Cr0,(0H),(g) + 6e’ + 3V, — Cry,05(s) + 30% + 2H,0(g)
e 2Cr03(g) + 6’ + 3V, - Cry,05(s) + 30}



Mechanisms of Cr poisoning

* Crin the gas phase and Mn in the LSM react directly to form Cr,0O,
and eventually a manganese spinel, (Cr,Mn);0,. The Cr,0; and spinel
phases that form block the transport of oxygen to the TPBs thereby
decreasing the oxygen partial pressure.

* The reduced oxygen partial pressure further drives the reaction of
spinel formation.



The Role of Thermodynamics

e Current density and oxygen transport in the cathode determine the
oxygen partial pressure distribution, and in particular the oxygen
partial pressure at the cathode/electrolyte interface.

Bk A
4FN
5 p0,(c) = pOgexp[— 1]

HZ{M Frinis




Introduction: The Role of Thermodynamics

e Different compounds
can form depending on
the temperature and
local oxygen partial
pressure

Perovskite cathodes | Product More stable at
pli0z) Temperature |Low<1000K<High)
(Low<0.01 atm<High)
[Lag g5rq - )Min0; pl LaoMnidz) | NA Low
p{LaMnOg) Both [slighthy low High
preferred)
plSriMin0;) MA High
p{LaCr0;) High High
SrCri, MA Low
LazCr0g MA Low
o-SrMinG; MA Lowr
plEriin0; .) Lowr High
plSrCri0;) High High
M0y Lowr High
MnCra, Lowr MA
(Lag g5y ;)Fedy p{LaFe0y) Both Both
plarFel; ) Lowr High
p{LaCr0;) Low High
Fe 0, MA High
SrCrdy Mid-range High
Srfeg Both Both
SrCri, High Low
La(Nip.sFeqs)03 plLaNiO3) High Both
p{LaFe0;) Both Both
MiC Low High
LaMi0, MA High
p{LaCr0;) Both Both
LasMiz0yp Low High




Summary of project tasks and overview of
ongoing work

* Electrochemically testing symmetrical and full cells with exposure to Cr,0; in a
dry and humid atmosphere as a function of pH,O (cathode), temperature
cathode microstructure, thickness, and current den5|ty

e Microstructural and TEM/FIB analysis of tested cross-sections.

. (I;/Iappmg of reaction products with pH,O (cathode), temperature and current
ensity

e Computational modeling.

 Development of protective coatings



Schematic of electrochemical cell
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SEM image of cathode cross section (1200°C
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Computational Investigations of
Chromium Poisoning
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Pore-Scale Reactive Transport Model

Develop a small scale model of reactive transport in the
porous cathode

Model will resolve cathode micro-structure

Formulate a damage factor to include Cr poisoning in full
cell performance model
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BU Approach to Protective
Coatings using EPD




Requirements of Protective Coatings

e Adherence with the substrate

e Stability (Thermodynamic & Thermomechanical)
* High electronic conductivity

e Low oxygen ion conductivity

e Spallation resistance (thermal cyclability)



Prior Candidates and Application Methods

* A number of spinel and perovskite coatings — e.g. (Mn,Co);0,
(Mn,Cr),0,, La, ,Sr,MnO;, LaMn, 4Ti, ,0,, La, Sr,CrO, etc.

* Atmospheric plasma spray (APS), aerosol deposition followed by
sintering, sputtering, PVD etc.

* Principle issues have been adhesion to substrate, high density of
coatings, and spallation of coatings after long term operation of cells.



BU Approach

e Using a cost effective process-Electrophoretic Deposition (EPD) to
apply a dense CuMn, O, spinel oxide on Crofer 22 APU to reduce the
oxidation of the alloy, minimize chromium transport and attack, and
maintain a low interfacial resistance



Properties of CuMn, cO, Spinel

* Electrical conductivity of CuMn, 0, at 800 C is around 100S/cm

Material Thermal
expansion
coefficient /K

CuMn, O, 12.2 x 10
Crofer 22 APU 12.0 x 10°
LSM 12.0 x 10®

YSZ 11.0 x 10



Electrophoretic Deposition Schematic
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Coating Process
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XRD of Coated and Uncoated Crofer 22 APU
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Cross-Sectional SEM of Coated Sample




Weight Gain of Uncoated and Coated Samples
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Oxidation Rate Parameters for Uncoated and
Coated Samples

Oxidation K. Ky Oxide thickness after
temperature (g‘j em’” s"'j (um by ! 3] 50000 b (um)
(°C)

Uncoated Crofer 800 83x10™ 10.51x 107 23.5
22 APU 3 3

750 45x 10" 245x 107 5.5

Coated Crofer 22 300 6.1x 107 2.87x 107 6.4
APU . - 15 >

750 6.25x 10 1.06x 107 24

Jd MW, |
,JZGXI{]:’ N/ n0; :
1/2 YM WO: Fcro,
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Elemental Distribution Map of Uncoated Sample after 800 °C,
120 h Isothermal Oxidation




Elemental Distribution Map of Coated Sample after 800 °C,
120 h Isothermal Oxidation




Schematic structure of oxide layer
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Transport Model — Converting flux equations to rate of
oxide layer growth

Flux due to chemical and electrostatic potential gradients:
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Transport Model — Converting flux equations to rate of
oxide layer growth

2Cr + 3/20, — Cr,04

AG = —1.120.300 + 2607 J mol™' K~!

pO, at alloy/Cr,0;, interface can be calculated from the above data and used
in integrating oxide layer growth rate equation
o, A0, _ a a = D,A In(pO,) and b = 8,D,/D,
dt 5| 82 b + 8-2
- + 8;\ 8'1
D, D, - + - =47

D, D,
2A In(pO,) N A In{p()g}a—
2 l

e |nitial stage — scale thickness small; growth rate dominated by transport through coating, linear

kinetics

e Later stage — scale thickness large; growth rate dominated by transport through scale, parabolic
kinetics.

e |ntermediate stage — transition regime, paralinear kinetics



Data Analysis

Oxidation K, D, D> Tot'al oxide
temperature thickness
©) o , , (um)
(g7/cm’s) (cm™/s) (cm™/s)
800 6.67X10™" NA 2.5X107'° 1.1
Uncoated
Crofer 22 APU 750 364X105|  NA 1.6X10Y7 | 055
800 NA 2.0X107" | 2.5X107"¢ 0.7
Coated Crofer
22 APU 750 NA 5.0X107% | 1.6X107 0.25

0,/D, and 6,/D, are the contributions of diffusion resistances from coating and scale

Based on our analysis of the data:
Equal contributions from coating and scale occurs at 850 h at 800°C
Equal contributions from coating and scale occurs at 100 h at 750°C

Our measurements at both temperatures were for 120 h. Thus 800°C data follow linear kinetics
and 750°C data follow paralinear kinetics



Schematic of ASR measurement setup
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ASR as a function of temperature for the various
samples
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Predicted long time ASR

temperature | Oxide thickness | Resistivity of Cr,O; ASR after 50000 h
("C) after 50000 h (mQem)* (mQem’)
(Lm)
Coated Crofer 22 800 6.4 1.7x10° 11
APU
750 24 2x10* 4.8

#W. Qu, etc. J. Power Sources. 153(1). 114 (2006)

Target Interconnect ASR < 100mQcm?




Future work on coatings

* Other materials compositions to be explored through EPD technique

* Transport in newer coating materials can be altered by suitable
doping strategies and engineering the point defect structure
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