Development of Criteria for Flashback Propensity in Jet Flames for High Hydrogen Content and Natural Gas Type Fuels

Zhixuan Duan, Alireza Kalantari, Elliot Sullivan-Lewis Vincent McDonell

UCI COMBUSTION LABORATORY

UNIVERSITY of CALIFORNIA• IRVINE

UTSR Workshop Purdue University, West Lafayette, IN October 22, 2014

Conducted under Department of Energy University Turbine Systems Research Contract Number DE-FE0011948; Steven Richardson PM

Motivation

UTSR Workshop, West Lafayette IN, October 22, 2014

Alternative gaseous fuels

- Integrated Gasification Combined Cycle (IGCC)
- Steam reforming of natural gas or liquid hydrocarbons
- Waste Treatment Digester Gas
- Biomass

Source	H ₂	CO	CH ₄	CO ₂	N ₂	C ₂	C ₃
High H ₂	90-100	0-10					
Process and refinery gas	25-55	0-10	30-65	0-5		0-25	0-25
Gasified coal/petcoke (O ₂ Blown)	35-40	45-50	0-1	10-15	0-2		
Gasified biomass	15-25	15-35	0-5	5-15	30-50		
Digester gas	0-1		50-75	25-50	0-10		

High hydrogen content fuels

UTSR Workshop, West Lafayette IN, October 22, 2014

UCI COMBUSTION LABORATORY

Performance Criteria

- Impact of Alternative Fuels on gas turbine combustion
 - Emissions
 - Operability issues
 - Lean Blow Off (Static stability)
 - Flashback

High hydrogen content fuels

4/40

• Combustion Dynamic (Dynamic stability)

Flashback

- Flame propagation from the combustion zone into premixing section of combustors
 - Flashback in the core flow
 The local burning velocity surpasses the local flow velocity
 - Combustion induced vortex breakdown (CIVB) <u>Swirl stabilized</u> gas turbine combustors Creation of negative flow region ahead
 - Flashback due to flame instabilities

Complex non-linear interactions of pressure fluctuations along with periodic heat release and flow hydrodynamics collectively

UTSR Workshop, West Lafayette IN, October 22, 2014

Structure of Burner Flames

Lewis, B., & Von Elbe, G.	Stability and structure of burner flames	1943
Von Elbe, G., & Mentser, M.	Further Studies of the Structure and Stability of Burner Flames	1945
Putnam, A. A., & Jensen, R. A.	Application of dimensionless numbers to flash-back and other combustion phenomena	1949
Thomas, N.	Structure and stability of burner flames	1949
Wohl, K.	Quenching, flash-back, blow-off-theory and experiment	1953

Effects of Various Factors

Grumer, J.	Predicting burner performance with interchanged fuel gases	1949
Grumer, J., & Harris, M. E.	Grumer, J., & Harris, M. E. Predicting interchangeability of fuel gases interchangeability of oil gases or propane-air fuels with natural gases	
Grumer, J., & Harris, M. E.	Flame-stability limits of methane, hydrogen, and carbon monoxide mixtures	1952
Grumer, J., & Harris, M. E.	Temperature dependence of stability limits of burner flames	1954
Dugger, G. L.	Flame stability of preheated propane-air mixtures	1954
Grumer, J., & Harris, M. E.	Flame-stability limits of ethylene, propane, methane, hydrogen, and nitrogen mixtures	1955
Bollinger, L. E., & Edse, R.	Effect of burner-tip temperature on flashback of turbulent hydrogen-oxygen flames	1956
Fine, B.	Stability limits and burning velocities for some laminar and turbulent propane and hydrogen flames at reduced pressure	1957
Kurz, P. F.	Stability limits of flames of ternary hydrocarbon mixtures	1957
Kurz, P. F.	Some factors influencing stability limits of Bunsen flames	1957
Berlad, A. L., & Potter Jr, A. E.	Relation of boundary velocity gradient for flash-back to burning velocity and quenching distance	1957
Van Krevelen, D. W., & Chermin, H. A. G.	Generalized flame stability diagram for the prediction of interchangeability of gases	1958
Fine, B.	Flashback of laminar and turbulent burner flames at reduced pressure	1958
Fine, B.	Effect of Initial Temperature on Flash Back of Laminar and Turbulent Burner Flames.	1959
Yamazaki, K., & Tsuji, H.	An experimental investigation on the stability of turbulent burner flames	1961
Caffo, E., & Padovani, C.	Flashback in premixed air flames	1963

UCI COMBUSTION LABORATORY

Effects of Various Factors

Fuel compositions (natural gas, propane, ethane, hydrocarbons mixtures)

UCI COMBUSTION LABORATORY

9/40

Figure: Berlad and A. E. Potter

UTSR Workshop, West Lafayette IN, October 22, 2014

Burner Thickness Effect

Industrial & Engineering Chemistry, 48(4), 802-807.c

UTSR Workshop, West Lafayette IN, October 22, 2014

11/40

UCI COMBUSTION LABORATORY

Effects of Various Factors

Khitrin, L. N. Peculiarities of laminar-and turbulent-flame flashbacks			
Cescotti, R.	Burners and flame technology		
Plee, S. L., & Mellor, A. M.	Review of flashback reported in prevaporizing-premixing combustors	1978	
Ball, D. A.,& Putnam, A. A.	Relation to burning velocity, quenching distance, and flash-back velocity gradient for low-and intermediate-Btu gases	1978	
Putnam, A. A., & Ball, D. A.	Effect of fuel composition on relation of burning velocity to product of quenching distance and flashback velocity gradient	1980	
Lee, S. T., & T'ien, J. S.	A numerical-analysis of flame flashback in a premixed laminar system	1982	
Fox, J. S., & Bhargava, A.	Flame speed and flashback gradient for simulated biomass gasification products	1984	
Karim, G. A., & Kibrya, M. G.	Flashback limits and flame propagation through a premixed stream of fuel and air near the lean flammability limit	1984	
Karim, G. A., Wierzba, I., & Hanna, M.	The blowout limit of a jet diffusion flame in a coflowing stream of lean gaseous fuel-air mixtures	1984	

Khitrin $\begin{cases} g = 0.023 \operatorname{Re}^{0.8} \left(\frac{\overline{U}}{D} \right) \\ g_c = \frac{S_L}{\delta_b} \end{cases} Pe_f = \frac{\delta_b}{D} \operatorname{Re}^{1.8} \operatorname{Pr} \xrightarrow{\delta_b = K \frac{\alpha}{S_L}} \operatorname{Re} = const.Pe_f^{1.10} \end{cases}$

Lee, S. T. and J. S. Tien (1982)

Different Flashback Mechanisms

Kroner, M., and Fritz, J.,	Flashback limits for combustion induced vortex breakdown in a swirl burner		
Kroner, M., and Fritz, J., Flashback limits for combustion induced vortex breakdown in a swirl burner		2003	
Davu, D., Franco, R.	, R. Investigation on flashback propensity of syngas premixed flames		
Xu, G., Tian, Y.,	Flashback limit and mechanism of methane and syngas fuel	2006	
Burmberger, S., Hirsch, C.,	Designing a radial swirler vortex breakdown burner	2006	
Noble, D. R., Zhang, Q.,	Syngas Mixture Composition Effects Upon Flashback and Blowout	2006	
Noble, D. R., Q. Zhang,	Syngas fuel composition sensitivities of combustor flashback and blowout.	2006	
Song, Q., Fang, A.	Dynamic and flashback characteristics of the syngas premixed swirling combustors	2008	
Littlejohn, D., Cheng, R. K.	A comparison between the combustion of natural gas and partially reformed natural gas in an atmospheric lean premixed turbine-type combustor	2008	
Littlejohn, D., Cheng, R. K.	Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions	2009	
Shelil, N., Bagdanavicius, A.	Premixed swirl combustion and flashback analysis with hydrogen/methane mixtures	2010	
Syred, N., Abdulsada, M.	The effect of hydrogen containing fuel blends upon flashback in swirl burners	2011	
Jejurkar, S. Y., & Mishra, D. P.	Flame stability studies in a hydrogen-air premixed flame annular microcombustor	2011	

- Combustion induced vortex breakdown (CIVB)
- Flashback in the core flow
- Syngas

Synthesis Gas

Wang, Q., McDonell, V.	Correlating flashback tendencies for premixed injection of hydrogen and methane mixtures at elevated temperature and pressure	2009
Daniele, S., Jansohn, P.	Flashback propensity of syngas flames at high pressure: diagnostic and control	2010
Eichler, C., & Sattelmayer, T.	Experiments on flame flashback in a quasi-2D turbulent wall boundary layer for premixed methane-hydrogen-air mixtures	2011
Eichler, C., & Sattelmayer, T.	Experimental investigation of turbulent boundary layer flashback limits for premixed hydrogen- air flames confined in ducts	2011
Dam, B., Love, N.,	Flashback propensity of syngas fuels.	2011
Syred, N., Abdulsada, M.	The effect of hydrogen containing fuel blends upon flashback in swirl burners	2011
Kedia, K. S., & Ghoniem, A. F.	Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate	2012
Shaffer, B., Duan, Z.,	Study of Fuel Composition effects on flashback using a confined jet flame burner	2013
Lin, Y. C., Daniele, S.,	Turbulent flame speed as an indicator for flashback propensity of hydrogen-rich fuel gases	2013
Duan, Z., Shaffer, B.,	Study of fuel composition, burner material, and tip temperature effects on flashback of enclosed jet flame	2013
Duan, Z., Shaffer, B.,	Influence of burner material, tip temperature, and geometrical flame configuration on flashback propensity of H2-air Jet flames	2014

- Hydrogen enriched flame
- Jet flame Advanced visual test is employed
- Computational Fluid Dynamics

Lin and Daniele (2013) $g_c = S_T / (Le \times \delta_{L0})$

Gas Turbine Conditions

- Daniele et al. investigated flashback propensity of syngas flame at gas turbine conditions
 - Systematic studies were not carried out
 - No correlation was developed
 - Limited data set

Daniele, S., Jansohn, P., & Boulouchos, K. (2010, October). Flashback Propensity of Syngas Flames at High Pressure: Diagnostic and Control. In *ASME Turbo Expo 2010: Power for Land, Sea, and Air* (pp. 1169-1175). American Society of Mechanical Engineers.

UCI COMBUSTION LABORATORY

UTSR Workshop, West Lafayette IN, October 22, 2014

Goals and Objectives

UTSR Workshop, West Lafayette IN, October 22, 2014

Goals

- Develop and validate a comprehensive model for prediction of flashback based on the data from the current work and the other data collected from literature. The model will incorporate effect of ambient pressure as well as thermal coupling between the flame and the burner rim.
- Provide detailed insight towards understanding flashback propensity in jet flames at gas turbine related conditions

Objectives & Timeline

Milestone Title	Planned Completion Date	Actual Completion Date	Verification Method	Comments
Project Management	8/2016			
Test Plan Fuels/Modules Draft Final	12/2013 1/2014	3/2014	Consensus from OEMs and DOE on plan	Draft complete 90% complete
Fabrication of Modules	2/2014		Photos of completed installation and test hardware	Completed
Diagnostics/Rig Setup and Commissioned	5/2014		Comparison of commissioning data with literature data	In progress
Experimental Studies Phase I Phase II	4/2015 12/2015		Comparison of commissioning data with literature data	
Analysis and Model Development				
Empirical Model	7/2015		Predicted vs Actual Results,	
Empirical Model II	1/2016		Goodness of Fit	
Physics Base Model	4/2016			

UTSR Workshop, West Lafayette IN, October 22, 2014

UCI COMBUSTION

LABORATORY

UTSR Workshop, West Lafayette IN, October 22, 2014

Test Plan Approach

 To help guide the Test Plan, additional analysis of flashback of jet flames was carried out to generate a clearer set of required information to accomplish the project goals

- Atmospheric studies identified burner material, tip temperature/inlet temperature and flame confinement have a strong impact on flashback propensity, while flame enclosure diameter and tube diameter play a negligible role
- Better correlations can be obtained if the burner tip temperature is used as the representative temperature rather than the inlet temperature.
 - Ttip-based SL able to determine flashback propensity in terms of critical velocity gradient (Duan et al. 2013)

$$g_{c_tip} = \frac{(155 + 546.4\alpha_{tip} + 5363.19d_{q_tip} - 0.71T_{tip} - 1.1S_{L_tip} + 1.1\alpha_{tip}T_{tip}^{2}}{-763.3d_{q_tip}S_{L_tip} - 0.0023T_{tip}S_{L_tip}})$$

STUDY OF FUEL COMPOSITION, BURNER MATERIAL, AND TIP TEMPERATURE EFFECTS ON FLASHBACK OF ENCLOSED JET FLAME (2013). *ASME J. Engr. Gas Turbines and Power*. Vol 135(12), pp. 121504-1 to 121504-10 (Z. Duan, B. Shaffer, and V. McDonell).

UCI COMBUSTION LABORATORY

Primitive Variable Correlation

Able to collapse materials effect

 g_{c_tip}

 $= (155 + 546.4\alpha_{tip} + 5363.19d_{q_tip} - 0.71T_{tip} - 1.1S_{L_tip} + 1.1\alpha_{tip}T_{tip} - 763.3d_{q_tip}S_{L_tip} - 0.0023T_{tip}S_{L_tip})^2$

STUDY OF FUEL COMPOSITION, BURNER MATERIAL, AND TIP TEMPERATURE EFFECTS ON FLASHBACK OF ENCLOSED JET FLAME (2013). *ASME J. Engr. Gas Turbines and Power*. Vol 135(12), pp. 121504-1 to 121504-10 (Z. Duan, B. Shaffer, and V. McDonell).

UCI COMBUSTION LABORATORY

• Primitive variable approach shows reasonable performance but lacks elegance

• To address this

- Determine *non-dimensional groups* involved in flashback propensity to capture all effects of various parameters
 - Buckingham Pi theorem
- Find a comprehensive model to predict flashback propensity under various conditions
- Verify the developed model for previous relevant data in the literature

UCI COMBUSTIO

Symbol	Definition	Symbol	Definition	
Flow characteristics		Premixed flame characteristics		
\overline{U}	bulk velocity of the mixture		adiabatic flame temperature	
u'	turbulent intensity	1 <i>f</i>	based on unburnt conditions	
		S.	laminar flame speed based	
Inermodynamic	s properties of flow	S_{L_u}	on unburnt conditions	
	density based on unburnt		lower heating value based	
	conditions		on unburnt conditions	
	kinetic viscosity based on		Measured burner tip	
μ_u	unburnt conditions	T_{tip}	temperature	
T_{μ}	Unburnt temperature	<i>a</i>	critical velocity gradient	
D		g_c	when flashback happens	
<u> </u>		b'	convective heat transfer	
α_{1}	thermal diffusivity based on	<i>n</i>	coefficient	
u		Ambient	conditions	
C_{P_u}	unburnt conditions	T ₀	ambient temperature	
k	thermal conductivity based	P ₀	ambient pressure	
~ <i>u</i>	on unburnt conditions	Burner properties		
ת	Mass diffusivity of fuel		thermal conductivity of the	
	composition into the mixture	<i>k'</i>	burner material	
		<i>d</i>	diameter of the burner	

 θ'

Non-dimensional groups

25/40

- Thermal conductivity of burner is significant in determining flashback propensity
 - Rate of flame regression into the premixing section differs for different burner material
- A comprehensive parameter survey based on Buckingham Pi theorem results in a physical correlation for flashback propensity prediction

$$Da = C_0 \cdot Le^{-6.12} \cdot \left(\frac{T_u}{T_0}\right)^{-1.71} \cdot \left(\frac{T_{tip}}{T_u}\right)^{-3.69} \left(\frac{\alpha}{d \cdot S_L}\right)^{-1.89} \cdot f_2(\frac{\theta'}{d}) \cdot f_3(\frac{P_u}{P_0})$$

UTSR Workshop, West Lafayette IN, October 22, 2014

UCI COMBUSTION

Correlation Performance

- Dataset from Duan, et al. 2013

Z. Duan, B. Shaffer, V. McDonell, G. Baumgartner, and T. Sattelmayer, "Influence of Burner Material, Tip Temperature, and Geometrical Flame Configuration on Flashback Propensity of H 2 -Air Jet Flames," *J. Eng. Gas Turbines Power*, vol. 136, no. 2, p. 021502, Oct. 2013.

Flashback propensity of Daniele, et al (2010)

Guidance from Test Plan Analysis

• Based on Analysis:

- Further investigation of effects of thermo-physical features of burner material on flashback propensity
 - More systematic study
- Extend the investigation on jet flame flashback to more gas turbine related conditions
 - More systematic study
- Framework to evaluate model performance as data are gathered is in place
- Eventually apply methodologies to develop/understand strategies to prevent flashback event and mitigate its damage

UCI COMBUSTIO LABORATORY

Experiments

UTSR Workshop, West Lafayette IN, October 22, 2014

Measurement Plan

- Fuel Composition Variation
 - Effect of Pressure
 - Effect of Preheat Temperature
- Effect of Burner Head
 - Burner Material
 - Burner Thickness

UTSR Workshop, West Lafayette IN, October 22, 2014

32/40

UCI COMBUSTION LABORATORY

- Air and fuel mixing through a Venturi mixer
- Flow straightening via honeycomb materials
- Interchangeable burner head
- Consistent burner rim temperature measurement
- Hydrogen pilot ignited with YAG laser to initiate reaction
- Overall setup is similar to that used in Beerer et al. (2014)

FLASHBACK AND TURBULENT FLAME SPEED MEASUREMENTS IN HYDROGEN/METHANE REACTIONS STABILIZED BY A LOW-SWIRL INJECTOR AT ELEVATED PRESSURES AND TEMPERATURES (2014). ASME J. Engr. Gas Turbines and Power, Vol 136, No. 3, pg 031502-1 --031502-9 (D.J. Beerer, V.G. McDonell, P.Therkelsen, and R.K. Cheng)

Premixed Jet Flames

YAG laser

Burner

Velocity profile using LDV

- Injector (80% completed)
- Fuel system (80% completed)
- Air system (80% completed)
- Preheating (100% completed)
- Water quenching system (80% completed)
- Air Mass Flow rate Control (70% completed)
- Fuel Mass Flow rate Control (70% completed)
- Hardware Setup (80% completed)
- Software Setup (50% completed)
- YAG laser (50% completed)

Air and fuel system

Test Parameters

• Pressure

 \succ 1 atm to 10 atm

Preheated temperature

> 300 K to 800 K

Fuel compositions

H ₂	100	75	50
CH ₄	0	25	50

$$\Pi_1 = Da = \frac{S_L^2}{\alpha \cdot g_c}$$

 $\Pi_5 = \frac{P_u}{P_0}$

 $\Pi_6 = \frac{T_u}{T_0}$

• Burner materials

Material	Heat Capacity	Heat Conductivity	Density
[-]	[-] [J/(g*C)] [W/(m*k)		[g/cm ³]
SS-304	0.5	21.5	8
Copper	0.385	385	7.94
Quartz	0.7	1.4-2.0	2.2

Burner thickness

$$\Pi_6 = \frac{T_f}{T_0}$$

 $\Pi_7 = \frac{\theta'}{d}$

UCI COMBUSTION LABORATORY

Fuel/Air Mixing

Computational Fluid Dynamics (CFD)

- Mixing profile **Reaction Kinetic Simulation**
- **Adiabatic Flame Temperature**
- Laminar Flame speed •

Next Steps

Physical Modeling and Interpretation (60% completed) Verifying the developed model for previous data in the literature

Experiment Set-up (60% completed)

Flashback diagnostic system

- Thermocouple (TC)
- Pressure Transducer (PT)
- High Speed Imaging

Flashback Data Acquisition (ongoing)

Computational Modeling (30% completed)

CFD modeling

- Combustion modeling of the premixed jet flame
- Flashback

Data Analysis and Correlation Development (0% completed)

- Single factor correlation
- General factor correlation
- Non-dimensional groups
- Comparison between current study and previous research

Conclusion and Suggestion (0% completed)

