

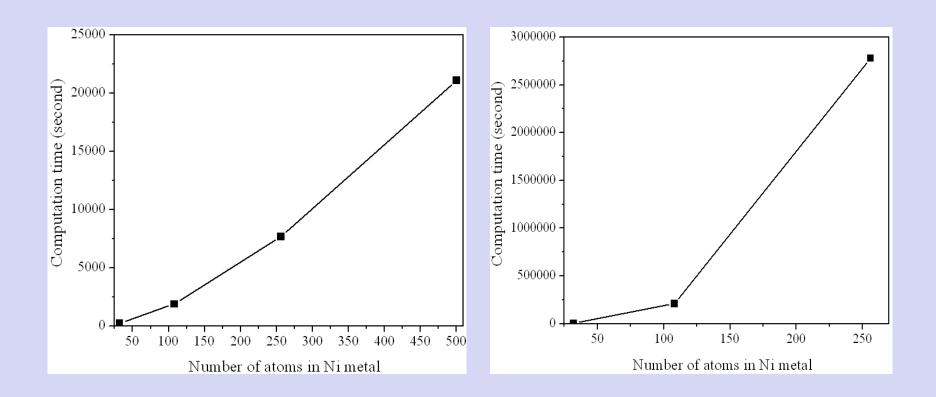
Thermal Barrier Coatings Hot Corrosion Studies

Dr. Shengmin Guo Drs. Yang and Khosravi of SUBR

Louisiana State University Department of Mechanical & Industrial Engineering Turbine Innovation and Energy Research Center

Computational Work

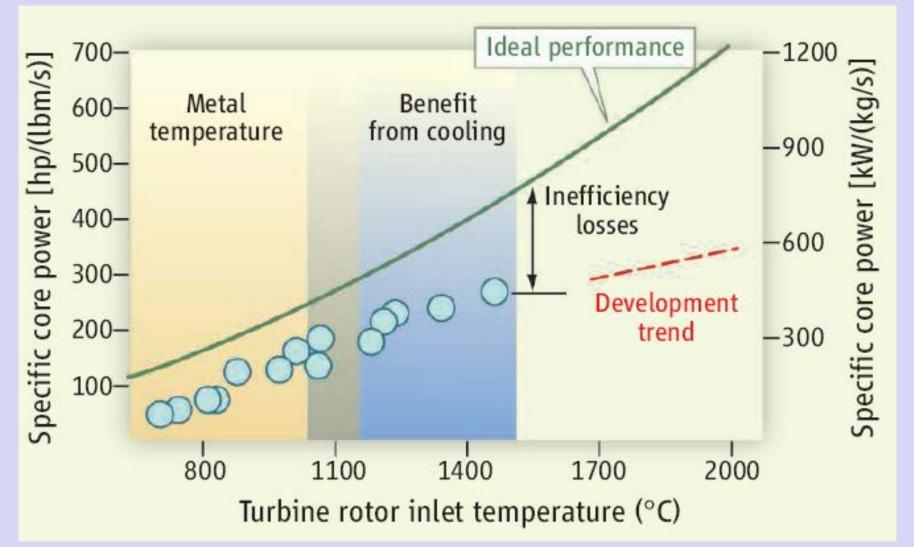
- Ab initio MD parallel codes;
- Potential building for top coat/bond coat;
- HPC simulations;
- Working on bond coat and top coat simulations, and data analysis;
- Validated by experiment work, the bond/top coat structure models were setup and optimized.



Implementation and Test

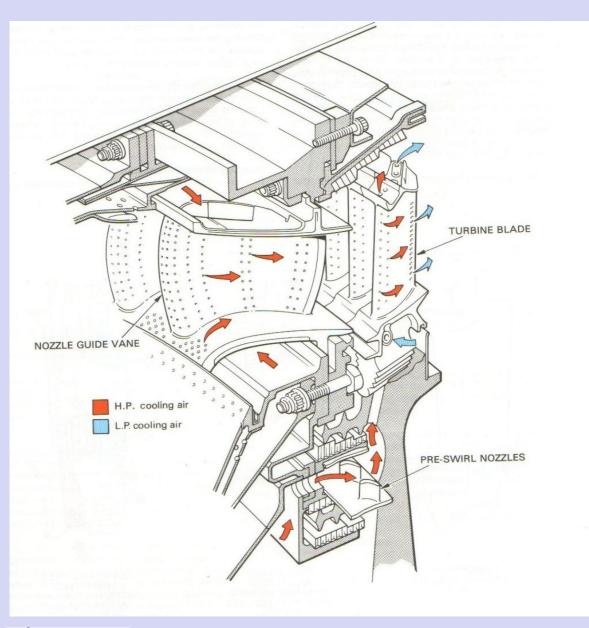
- For kinetic energy fitting (KEF) based ab initio MD method we used parallelization by atom method.
- In VASP code, we used parallelization by band and plane wave methods.
- With ~300 atoms model system, VASP has optimized performance by using 128 nodes in LONI Linux cluster.

Performance Test



KEF MD 2000 steps with Ni run on one node.

VASP MD 2000 steps with Ni run on 32 nodes.

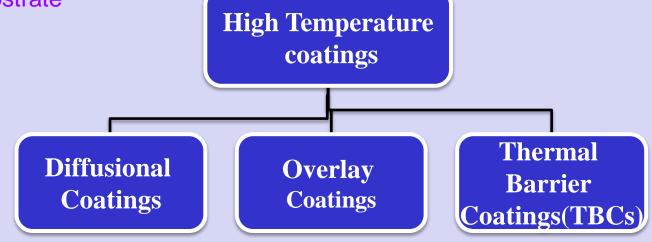


The Hotter the Engine, the Better

Perepezko, 20 NOVEMBER 2009 1068 VOL 326 SCIENCE 5

The Need for Turbine Cooling

Combustor Gas 1800 K


Blade Metal 1200K

Heavily cooled with air (from compressor) at 800 K

High Temperature Coatings

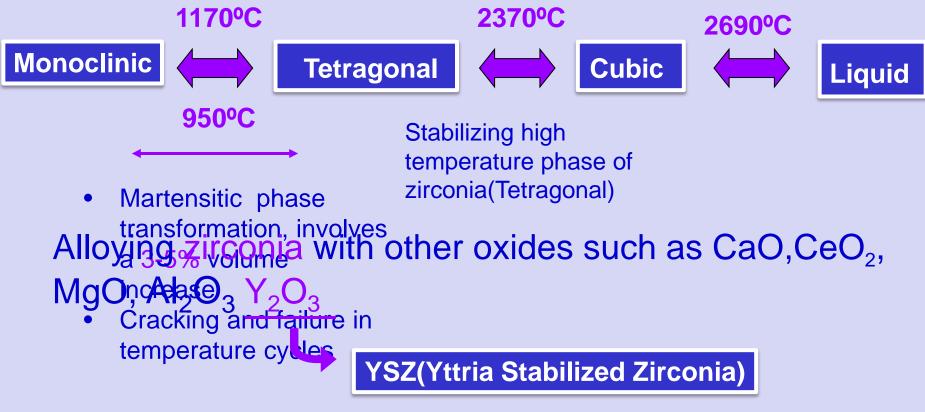
- Preventing directly expose of substrate to the corrosive environment
- Providing a barrier against penetration of molten salt and gases to substrate

Aluminide coatings, an outer layer(Core Core Core with an MCrAIY \longrightarrow Y,Zr,Mo,Hf enhanced oxidation resistance is deveRopeddaylthboredetion of bstrate Al withEthenNitCo inethedbaseon of TBC top coat to substrate and metal decreasing the oxidation and hot corrosion rate

TBC on Nozzle Guide Vanes

Desired Material Properties for TBC (Material requirements for new TBC)

- High melting point
- No phase transformation between ambient and operational temperature
- Low thermal conductivity
- Co-efficient of thermal expansion similar to the underlying alloy
- Excellent adhesion to the metallic substrate
- Low sintering rate of the porous microstructure
- Chemical inertness



Zirconia Based TBCs

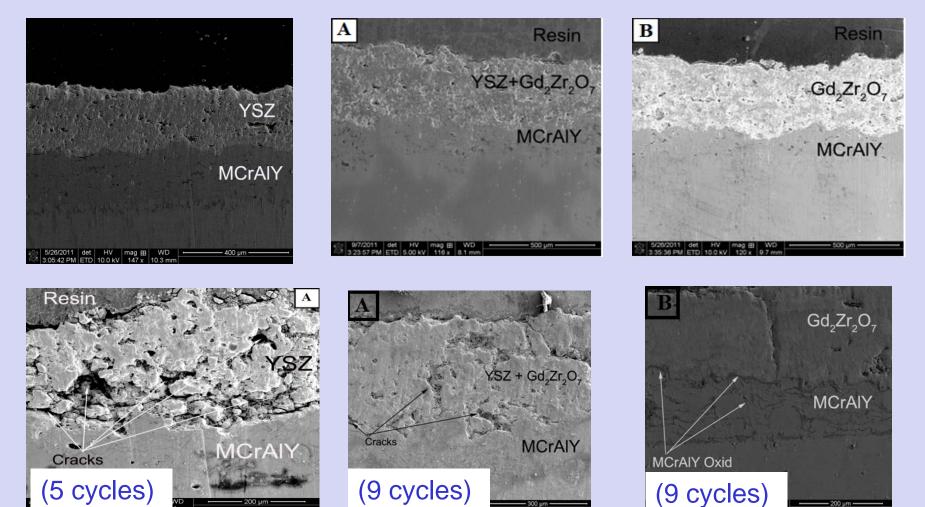
Melting point = 2690°C

Zirconia has 3 phase transformations

Yttria Partially Stabilized Zirconia

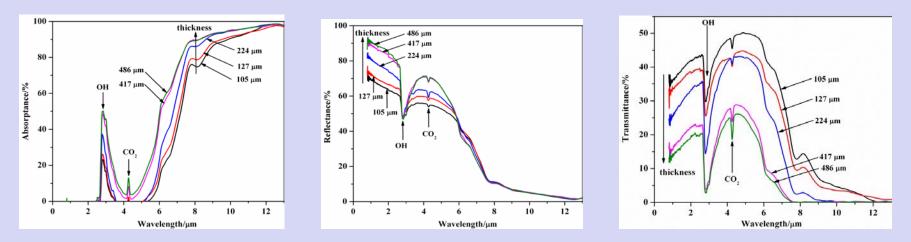
New Candidates for TBCs

- The search for alternative coating materials other than the well established YSZ system has consisted of two main approaches:
 - alternative materials to ZrO₂-based systems (Rare Earth Zirconate)
 - alternative stabilizers to Y₂O₃ for ZrO₂-based systems(CeO₂,Ta₂O₅,Nb₂O₅, TiO₂)



Rare-earth Zirconate: Gd₂Zr₂O₇

- Alternative materials to ZrO₂-based systems
 - Among high-melting ceramic materials, Rare-earth
 Zirconates ceramics are potential candidates for hightemperature thermal barrier coatings applications
- Gadolinium Zirconate (Gd₂Zr₂O₇)
 - Gd₂Z_{r2}O₇ has the lowest thermal conductivity of rareearth zirconates
 - Relatively higher thermal expansion coefficients (CTE), higher stability, and better ability to accommodate defects than YSZ.


Gd₂Zr₂O₇ has a better hot corrosion resistance

Habibi et al. Journal of European Ceramics Society, 32 (2012) 1635–1642₁₃

Gd₂Zr₂O₇ Has Better Optical Properties

- GZ shows high Reflectance and low transmittance
- Reflect more thermal radiation energy and permit less radiation to penetrate into the BC.

Li.Wang, Jeffrey I. Eldridge, S.M. Guo, 2013, *Thermal Radiation Properties of Plasma-Sprayed* $Gd_2Zr_2O_7$ *Thermal Barrier Coatings*, Scripta Materialia, Volume 69, Issue 9, November 2013, Pages 674–677

ZrO₂-Y₂O₃-Ta₂O₅ Systems

TBC Hot Corrosion Studies

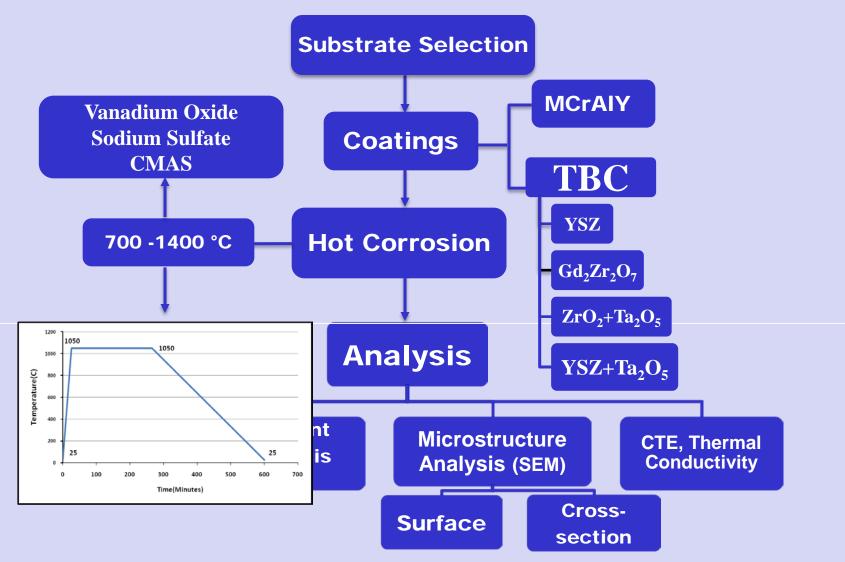
15

High Temperature Corrosion

- Type one (850-1100°C)
 Vanadium and Sulfur in low quality fuels
 (Sodium sulfate and vanadium oxide)
- Type two (600-800°C)
 Pitting, forming metal sulfates
 Sodium sulfate Cobalt sulfate,
 Sodium sulfate Nickel sulfate

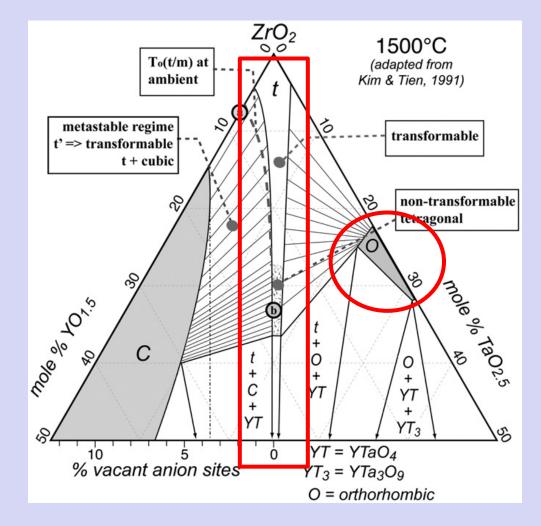
Hot corrosion mechanism

- For alloys: breaking the protective oxide scale and penetration of molten salt in substrate
- For coatings: reacting with bulk of coating, inducing stress and phase transformation in coating which leads to crack formation and spallation



Failure of TBCs

Experimental Studies

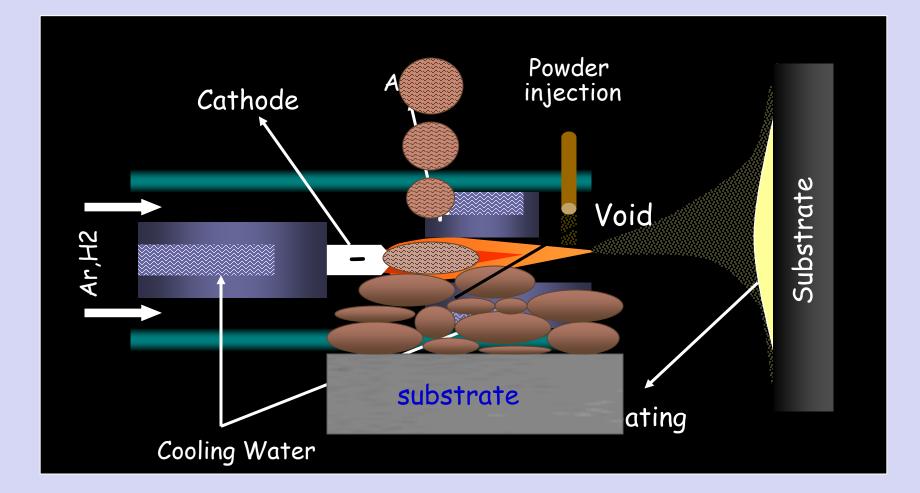

Why Tantalum Oxide?

- Ta₂O₅ is a pentavalent oxides and it has a melting point over 1800°C.
- On heating it undergoes a phase transformation at 1460°C which is well above the typical turbine surface temperatures.
- Substituting Y with Ta should lower the activity and diffusivity of Y in zirconia solid solution thus make this composition more resistant to hot corrosion(defect association, Mayo 2002)

The Amount of Tantalum Oxide ?

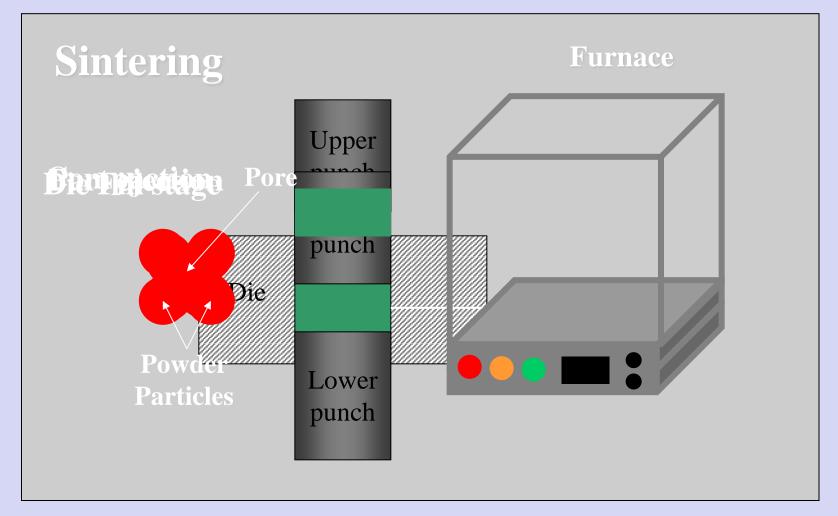
- Previous reports on Y₂O₃-Ta₂O₅ co-doped zirconia systems mainly have a focus on the system stability with equal Y and Ta.
- The investigated compositions generally have a low Ta₂O₅ content of less than 20 wt%.
- Our Focus: Zirconium tantalum oxides with single Orthorhombic phase (TaZr_{2.75}O₈)

Pitek and Levi, Surf. Coat. Technol. 201 (2007) 6044–6050

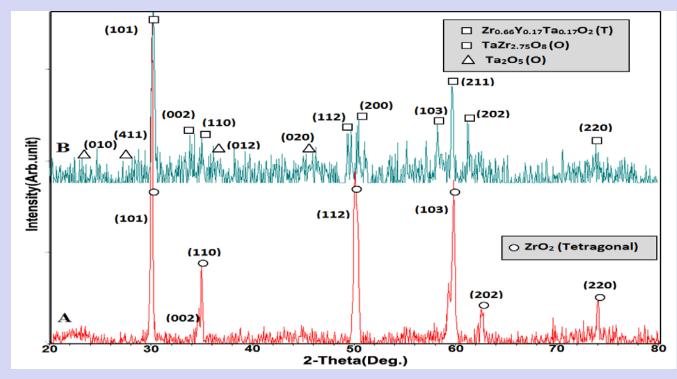


Deposition Methods

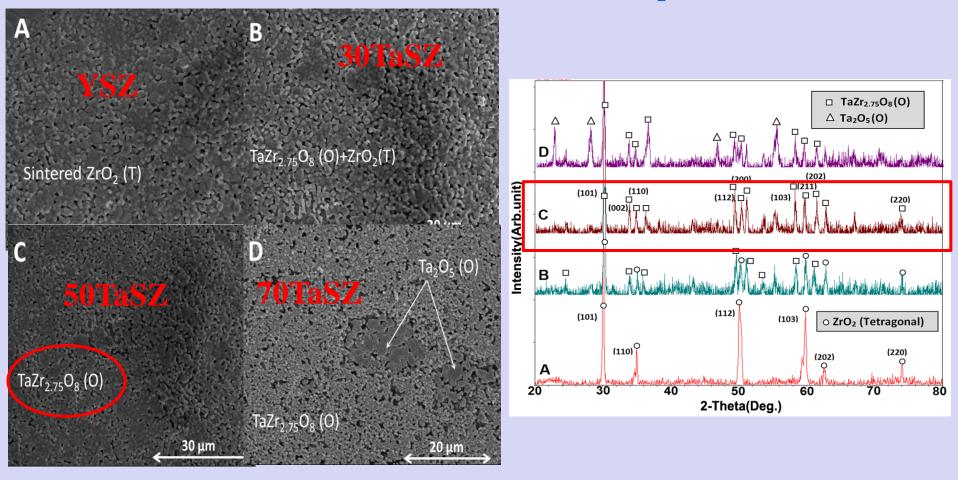
- Mainly 3 methods (depends on coating material, substrate shape, availability of powders and cost)
 - Air Plasma Spray (APS)
 - Electron Beam physical vapor deposition (EB-PVD)
 - High Velocity Oxyfuel (HVOF)
 - Conventional pressing and sintering (Powder metallurgy)



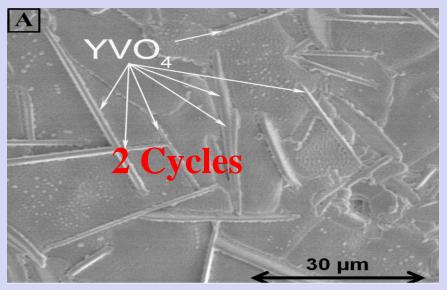
AIR PLASMA SPRAY(APS)

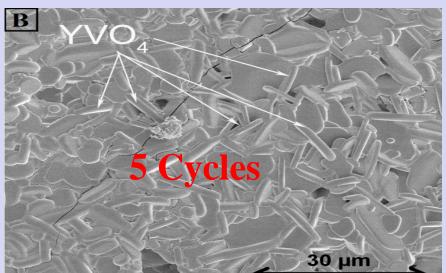


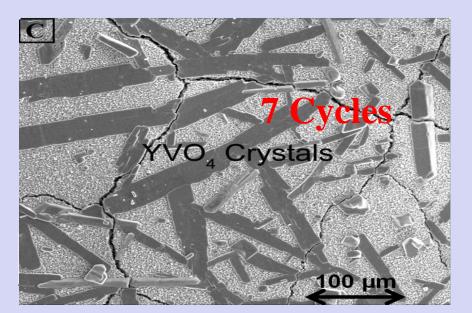
Pressing and Sintering

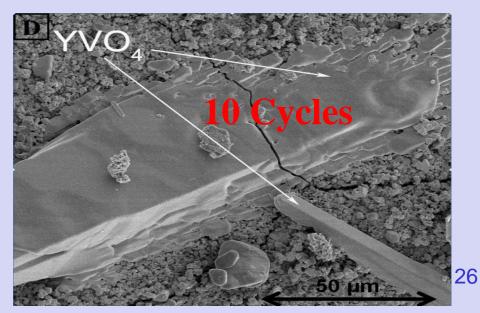

As-Received Samples

- YSZ is tetragonal zirconia.
- 50TaYSZ sample (50wt%YSZ+50wt%Ta₂O₅) forms complex Zirconium tantalum (Yttrium) oxide (TaZr_{2.75}O₈ and Zr_{0.66}Y_{0.17}Ta_{0.17}O₂)
- Orthorhombic phase zirconium tantalum oxide : TaZr_{2.75}O₈

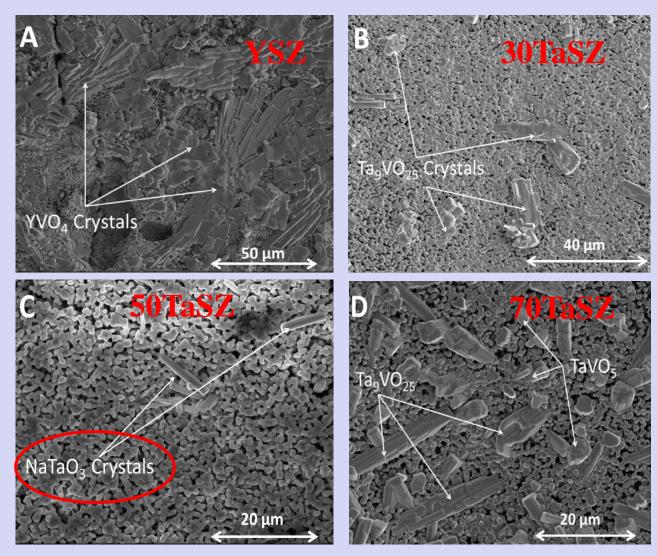

As-Received Samples




SEM Surface image and XRD patterns of as-received A) YSZ, B) 30TaSZ, C) 50TaSZ and D) 70TaSZ Orthorhombic phase zirconium tantalum oxide : TaZr_{2.75}O₈



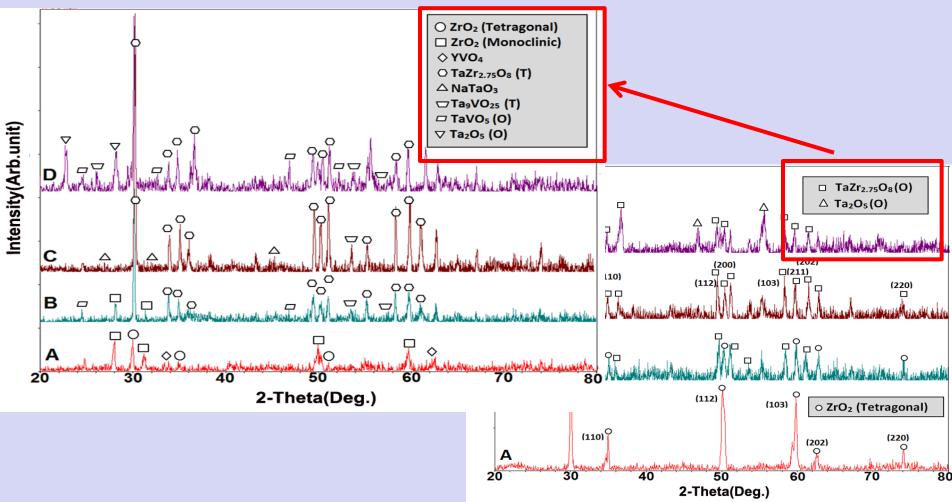
YSZ Hot Corrosion Results: Yttrium Vanadate



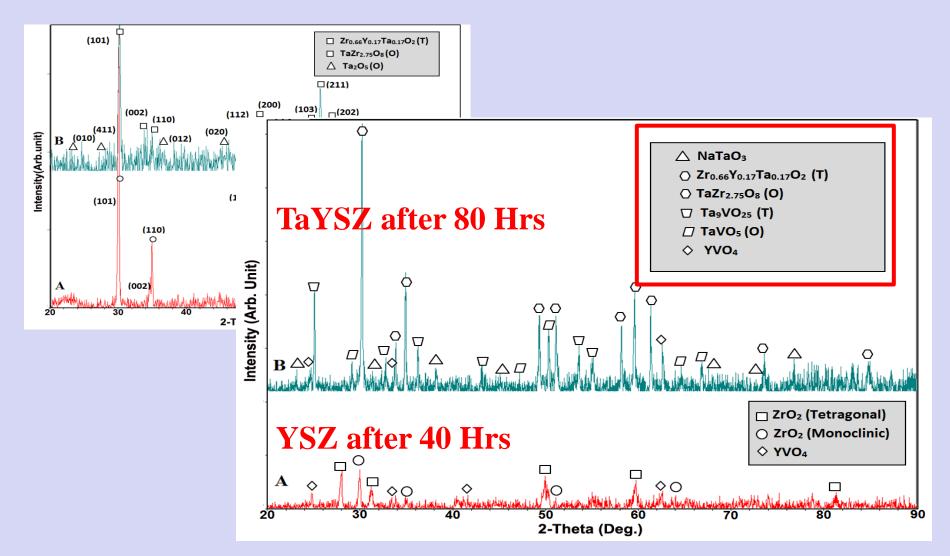
Hot Corrosion Results

SEM surface images of samples after hot corrosion in Sodium Sulfate + Vanadium Oxide at 1100°C for 40 hours. A) YSZ, B) 30TaSZ C) 50TaSZ

D) 70TaSZ


50TaYSZ Hot Corrosion Results

Ē


TaSZ Hot Corrosion Results

XRD patterns of A) YSZ, B) 30TaSZ, C) 50TaSZ and D) 70TaSZ after Hot corrosion for 40 Hrs

TaYSZ Hot Corrosion Results

Hot Corrosion Reactions

• Sodium Metavanadate (NaVO₃) forms due to the presence of both Vanadium Oxide and Sodium Sulfate :

 $V_2O_5 + Na_2SO_4 \rightarrow 2(NaVO_3) + SO_3$

–For 30TaSZ, 50TaSZ and 70TaSZ, the possible reactions that would have produced those identified reaction products include:

 $\begin{array}{l} \mathsf{TaSZ} \; (\mathsf{Ta}_2\mathsf{O}_5) \; (\mathsf{s}) + \mathsf{NaVO}_3 \; (\mathsf{I}) \rightarrow \mathsf{NaTaO}_3(\mathsf{s}) + \mathsf{TaVO}_5(\mathsf{s}) \\ \mathsf{TaSZ} \; (\mathsf{5Ta}_2\mathsf{O}_5) \; (\mathsf{s}) + \mathsf{NaVO}_3 \; (\mathsf{I}) \rightarrow \mathsf{NaTaO}_3(\mathsf{s}) + \mathsf{Ta}_9\mathsf{VO}_{25}(\mathsf{s}) \end{array}$

 V₂O₅ may also react with Ta₂O₅ directly at elevated temperature. According to Ta₂O₅-V₂O₅ phase diagram, in temperatures lower than 1200°C, two possible components are TaVO₅ and Ta₉VO₂₅

 $\begin{array}{l} V_2O_5~(l) + TaSZ~(Ta_2O_5)~(s) \to 2TaVO_5~(s) \\ V_2O_5~(l) + 9~TaSZ~(Ta_2O_5)~(s) \to 2Ta_9VO_{25}~(s) \end{array}$

50TaYSZ Hot Corrosion Reactions

 $ZrO_2(Y_2O_3) + 2(NaVO_3) \rightarrow ZrO_2 + 2(YVO_4) + Na_2O$ (1)

TaYSZ (Ta₂O₅) (s) + NaVO₃ (l) \rightarrow NaTaO₃(s) + TaVO₅(s) (2)

TaYSZ (5Ta₂O₅) (s) + NaVO₃ (l) \rightarrow NaTaO₃(s) + Ta₉VO₂₅(s) (3)

•After 80 hours, only very weak NaTaO₃, TaV₉O₂₅, TaVO₅ and YVO₄ XRD peaks could be detected on the surface of the TaYSZ sample.

•Vast areas of $Zr_{0.66}Y_{0.17}Ta_{0.17}O_2$ and $TaZr_{2.75}O_8$ were identified intact after Hot corrosion, it is more likely that the excess Ta_2O_5 in the sample reacted with the molten salt to form the above mentioned products.

•No spallation of the sample was found even after 80 hours (twenty 4-h cycles) of testing at 1100°C, which is twice the YSZ test duration.

Computational Work

- Gibbs Free Energy of Formation data
- There is no data in literature for Gibbs Free energy of Formation of $TaVO_5$, Ta_9VO_{25} and $NaTaO_3$, So *ab initio* density functional theory (DFT) based electronic structure simulations to obtain the relevant thermodynamic data
- $\begin{aligned} \text{ZrO}_2 \left(\text{Y}_2 \text{O}_3 \right) + 2(\text{NaVO}_3) &\rightarrow \text{ZrO}_2 + 2(\text{YVO}_4) + \text{Na}_2 \text{O} \end{aligned} \tag{1} \\ \text{Ta}(\text{Y})\text{SZ} \left(\text{Ta}_2 \text{O}_5 \right) (\text{s}) + \text{NaVO}_3 (\text{I}) &\rightarrow \text{NaTaO}_3(\text{s}) + \text{TaVO}_5(\text{s})(2) \\ \text{Ta}(\text{Y})\text{SZ} \left(5\text{Ta}_2 \text{O}_5 \right) (\text{s}) + \text{NaVO}_3 (\text{I}) &\rightarrow \text{NaTaO}_3(\text{s}) + \text{Ta}_9 \text{VO}_{25}(\text{s}) \end{aligned}$

Substance	Y ₂ O ₃	NaVO ₃	YVO ₄	Na ₂ O	Ta ₂ O ₅	NaTaO ₃	TaVO ₅	Ta ₉ VO ₂₅
Gibbs E	-2713.24	-1501.93	-3960.34	-494.51	-1719.71	-1304.14	-2048.53	-10693.86
(kJ/mol)								

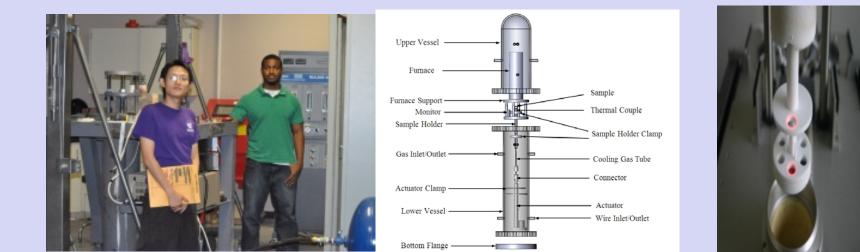
- YVO₄ (Eq.1) is much more stable than both NaTaO₃ and TaVO₅ (Eqs.2 and 3)
- Thermodynamic Data confirms experimentally observed faster reaction of Eq.1 than Eqs. 2 and 3.

(3)

Conclusions

Morphologies

- At the beginning of the hot corrosion process, the hot corrosion products (TaVO₅, Ta₉VO₂₅ and YVO₄) have dendritic like shapes; then as the hot corrosion proceeds, these hot corrosion products become larger and their morphologies change to rod/plate-like shapes.
- YSZ sample
 - Production of YVO_4 , leaching Y_2O_3 from the YSZ, progressive tetragonal to monoclinic destabilization transformation, crack formation
- ZrO_2 - Ta_2O_5 and ZrO_2 - Y_2O_3
 - Based on thermodynamic data and basicity of Y_2O_3 and Ta_2O_5 and their tendency to react with molten salt, the growth rates of NaTaO₃ and TaVO₅ are slower than that of YVO_4 in the prolonged hot corrosion tests which indicate better stability of zirconia, stabilized with Ta_2O_5 rather than with Y_2O_3 .
- ZrO₂ 50 wt.% Ta₂O₅
 - hot corrosion resistance of 50TaSZ is the best. This sample has a near single orthorhombic phase of TaZr_{2.75}O₈, which is highly stable in high temperatures and resistant to hot corrosion attack in molten salts.


Dr.Guo's Group Funded by NASA, DOE, BOR, etc. Studies on TBCs

Dr.Guo's GroupFunded by NASA, DOE, BOR, etc.Coating Characterizations

Thank you for your attention!

