

Anbo Wang, Gary Pickrell, Zhihao Yu, Brian Scott

Center for Photonics Technology Virginia Tech, Blacksburg, VA 24061 awang@vt.edu

Outline

- Phase I and Phase II
 - Background
 - Sensing principle candidates
 - Laboratory tests
 - Field tests
- Phase III
 - Study on the property of sapphire fibers
 - Finalizing of the sensor structure
 - Silica-sapphire splicing technique
 - Optimization of optical system and data acquisition
 - Materials Selection
 - Probe Design
 - Field Testing

Motivation

- Temperature sensor for harsh-environments:
 - Coal gasifier
 - Gas turbine
- Temperature measurement is critical for:
 - Gasifier start-up
 - Process optimization
 - Insulation wear vs. coal slag transition.
 - Event/failure detection
- Help make gasification cost-competitive
 - Reduce down-time
 - Improve operational efficiency

Objective

• Objective:

To demonstrate the capability of an integrated sapphire optical temperature sensor through the development of sapphire based sensor assemblies and performance evaluation of the sensor on a full scale coal gasifier and a bench scale aero thermal turbine combustion rig.

Background: challenges

- Coal gasifiers challenging harsh environment:
 - High temperatures: between 1100-1500°C.
 - Extreme corrosion:
 - coal slag
 - alkali vapors
 - transition metals

P1&P2: Background

- Industrial need in high temperature measurement
- Review on existing technique
 - Non-optical: high temperature thermocouple, acoustic methods and gas-viscosity thermometry
 - Optical: remote pyrometry, thermal expansion thermometers, thermoluminescence thermometers and Rayleigh scattering thermometers
- Advantage of single crystal sapphire
 - Optical properties
 - Thermal-optic effects
 - Mechanical properties
 - Chemical inertness

P1&P2: Sensing principle candidates

- Principles:
 - Extrinsic Fabry-Pérot Interferometric (EFPI)
 - Polarized-light interferometric sensor (PLIS)
 - Broadband Polarimetric Differential Interferometry (BPDI)
 - EFPI sapphire wafer sensor
- Possible sensor designs
- Algorithm principles
- Estimation on the affect of harsh environment
 - Blackbody Radiation
 - Corrosion

P1&P2: Laboratory tests

- Sapphire fiber EFPI sensor
 - Too complicated to fabricate
 - Not suitable for industrial deployment
- Intensity based PLIS sensor
 - Structure not practical for industrial deployment
- Sapphire BPDI sensor
 - Free space structure has a high requirement for testing environment and low robustness
- Sapphire wafer EFPI sensor (chosen)
 - Compact, simple, robust and stable.

P1&P2: Field tests

- Wabash field test of BPDI sensor
 - No test were performed due to numerous logistical problems
- TECO field tests of sapphire wafer EFPI sensor
 - First (2006-2007): ~210 days of sensor lifetime demonstrated
 - Second (2006): ~20 days of sensor survival
 - Third (2007-2008): ~9 days of sensor survival
- Issues addressed: packaging and sensor long-term stability

P3: Study on the property of sapphire fibers

• Study on contamination and decay of sapphire fiber

• Thermal fusion cap sealing technique

• Tube sealing sensor

• Addressing of multi-surface interference issue

• Side polished sensor design

• Side polished sensor improvement

43 days lab test passed

P3: Silica-sapphire splicing technique

- Choosing the right multimode fiber:
 - Nufern 100/140 MMF
 - OFS 105/125 MMF
- Attempt of angle-polished design to remove void in fiber core

P3: Silica-sapphire splicing technique

• Sapphire-100/140 MMF-105/125 MMF splicing scheme

- Splicing point thermal endurance characterization
 - 600°C as the maximum surviving temperature
 - 400°C as the suggested working temperature

P3: Optimization of optical system and data acquisition

• Fiber system optimization

105/125 MMF for all system, including coupler and feedthrough. Effectively reduced loss and extended lifetime of sensors.

P3: Optimization of optical system and data acquisition

• Data Acquisition Software

Totally rewritten and fully tested. Now more stable, more flexible, more robust, jumping free in demodulation, and field-communication ready.

P3: Probe packaging design

- Based on the corrosion testing
 - Design utilized:

CENTER FOR PHOTONICS TECHNOLOGY

Invent the Future

P3: Materials Testing and selection

• Materials testing for corrosion from coal slag

First blank probe results

P3: Blank probe field test #1 results

• Probe installed at Eastman Chemical on

P3: Blank probe field test #1

• Failure analysis done

Progress updates: blank probe thermal modeling

- Sapphire tube surrounded by high chrome paste experienced stresses ranging from 1.5GPa-5GPa (220ksi-725ksi).
- Highest stress concentrations in corners.
- Yield strength of sapphire at room temperature is around 400MPa (58ksi).
- Yield strength drops to 325MPa (47ksi) at 1000°C.

P3: Blank probe field test #2

- Redesigned based on field test #1
 - Moved chrome paste to cold area

Alumina adhesive

P3: Blank probe field test #2 results

• Probe installed at Eastman on

P3: Blank probe field test #2 results

P3: Final Field test probe assembly

tube

Probe packaging components

P3: Final field test probe testing

Sensor #	S 10	S 11	S14	\$15	S 16	S18
Original total intensity (a.u.)	3193	3277	1789	3233	2377	3120
Total intensity after annealing	36%	65%	40%	62%	52%	57%
Original fringe contrast	0.232	0.192	0.204	0.184	0.193	0.221
Fringe contrast after annealing	85%	100%	80%	97%	85%	91%

Final packaging prior to flange attachment

Sensor stability

Summary

- Difficult environment to operate and experiment in:
 - Developments achieved
 - Long term sensor stability
 - Elevated T
 - Accurate & stable High T measurement
 - Harsh environment
 - Environment-material interaction understanding
 - Coal slag
 - Packaging
 - Temperature
 - Sapphire temperature instrumentation packing
 - High T
 - High T & corrosive environment

Thank you

• Questions?

