

DEVELOPMENT OF NDE METHODS FOR CERAMIC COATINGS

J.G. Sun, Argonne National Laboratory, Argonne, IL, USA

In collaboration with: A.A. Kulkarni, Siemens Corp., Charlotte, NC, USA V. Viswanathan and S. Sampath, Stony Brook U., NY, USA

2014 NETL Crosscutting Research Review Meeting Pittsburgh, PA May 19-23, 2014

Work supported by U.S. Department of Energy, Office of Fossil Energy, Advanced Research-Materials Program

Outline

- Background on TBC degradation and NDE
- Objectives of this project
- NDE developments for TBC systems
 - Method development/validation
 - NDE for industrial components
- NDE for TBC life prediction
- Summary
- Planned future efforts

Background

- Thermal barrier coatings (TBCs) are required for high-temperature metallic components in advanced gas turbines to be operated at higher efficiency and low emission
 - TBCs may reduce metal surface temperature by >100°C
- TBCs have become "prime reliant" material → their condition monitoring and lifetime prediction by NDE is important

Temperature drop schematics

Uncoated and TBC-coated blades

TBC Materials and Structures

- Standard TBC material is 7-8wt% yttria stabilized zirconia (7-8YSZ)
 Multi-ceramic-layer TBCs are being developed
- TBC is usually applied by air plasma spraying (APS) or electronbeam – physical vapor deposition (EB-PVD)
 - Both thermal conductivity and thickness are important TBC parameters
- Because TBC is applied on component surface, its inspect over entire surface (by imaging NDE methods) is necessary

Schematic of TBC system

APS TBC

Т100µm

EB-PVD TBC

TBC Property/Structural Change in Life

- Two characteristic changes:
 - (1) TBC contineously sinters with conductivity increase
 - (2) Cracks and delaminations develop near interface
- Quantitative NDEs are required to detect both changes for life prediction
 - To measure material property changes
 - To determine property structure relationship (for entire TBC life)

NDE Applications for TBCs

- Many NDE technologies have been studied/used for TBCs: thermal imaging, optical (reflection/scatter, emission, spectroscopy, etc), electrochemical, electromagnetic, ultrasonic, x-ray, etc
 - Most are not quantitative
 - Most are not suitable for field application
- NDE for TBC health monitoring and life prediction:
 - A practical NDE method/model has not been established
- NDE for detection of coating flaws (eg, delaminations, FOD):
 - Many NDE methods can detect large flaws; those flaws usually appear near end of TBC life so their detection is of less value
 - Small and deep flaws are difficult to detect but more important
- NDE for quality control of fabricated TBC components:
 - Only single-point thickness measurement is used by manufacturer
 - Current NDE methods are not suitable for TBC property/quality measurement especially for entire TBC-coated component surface

Objectives of This Project

- Develop and evaluate advanced NDE methods for (1) TBC life prediction and (2) high-resolution detection of coating flaws
 - (1) For life prediction (quantitative NDE):
 - thermal multilayer analysis (MLA) method
 - (2) For high-resolution flaw detection
 - thermal tomography (TT) method
- Develop NDE methods for functional materials (gas-separation membrane, fuel cell, etc)
 - Synchrotron x-ray CT, thermal tomography

Recent NDE Developments

- Continued development of two thermal imaging methods
 - Thermal multilayer analysis (MLA) for TBC life prediction
 - Validation of MLA measurement accuracy for TBCs
 - Surface treatment (black paint) material evaluation
 - Development of theoretical models for (1) translucent TBCs and (2) double-layer TBCs
 - Evaluation for testing industrial components
 - Thermal tomography method (3D TT imaging)
 - Continued development of new algorithm for high-resolution imaging
- Continued evaluation of thermal imaging NDE methods for TBC life prediction
 - Collaborations with Siemens and Stony Brook Univ.

Presentation Topics

- Development and application of multilayer analysis MLA method
 - Validation of MLA measurement accuracy
 - Effect of surface paint on TBC property measurement
 - Theoretical development for translucent TBCs
 - Theoretical development for double-layer TBCs
 - Application for a turbine blade
- NDE for TBC life prediction

Thermal Imaging Multilayer Analysis (MLA) Method

- MLA method developed at ANL can measure TBC thermal properties:
 - Two TBC properties: thermal conductivity and heat capacity (or thickness)
 - The only method suitable for field applications (and fully automated)
 - The only method for imaging entire component surface
 - Paper accepted by JHT

One-sided experimental setup

Thermal conductivity imaging

0.5 W/m-K

1.4 W/m-K

MLA Measurement Accuracy

- MLA measurement results were demonstrated to be consistent with other measurement methods
- However, all other methods don't have adequate accuracy (5% or poorer) and there is no TBC "standard"
- What is absolute accuracy for MLA?
 - A long-standing problem for MLA and all other NDE methods

TBC Thermal Conductivity Data (2010)

MLA Absolute Accuracy - Demonstrated

- MLA accuracy was demonstrated from thermal effusivity e=(kpc)^{1/2} measurements for various standard bulk materials
- A tape was bonded on bulk material to form a two-layer system
 - Measured bulk material effusivity e is within 2% of nominal value
 - This is best demonstrated accuracy among all methods
 - > Suitable for TBC life prediction because TBC property change is small (10%)

Predicted and nominal thermal effusivity e values for various standard materials

Effect of TBC Surface Treatment

- Current thermal-imaging model is for opaque coatings (eg, metallic)
- TBC is translucent, needs surface treatment to make it opaque
 - Common method: apply a thin graphite-based paint on TBC surface (which can be easily burn off at a low temperature)

- In collaboration with Dr. Cernuschi and Dr. Bison of Italy, effect of surface treatment on TBC property measurement was evaluated
 - Three different graphite paints
 - Three type TBCs: APS, EB-PVD, PS-PVD
 - Graphite layer did not affect measured TBC thermal diffusivity
 - A paper was submitted to a journal

Thermal Imaging for Translucent TBCs

- A method for translucent TBC property measurement is needed
 Because it is usually not desirable to paint a TBC part black
- Difficulty: large optical property changes over thermal imaging wavelength bands
- No theoretical model for flash thermal imaging at present
 - Exp. data for "opaque" and translucent TBC are significantly different

TBC optical properties

Thermal imaging data for "opaque" and translucent TBC

Theoretical Modeling for Translucent TBCs

• Theoretical model for translucent TBCs include both conductive and radiative heat transfer within the coating layer

- Radiative transport is modeled by a two-flux formulation:

$$q_{r} = \int_{0}^{\infty} q_{r\lambda} d\lambda = \int_{0}^{\infty} (q_{r\lambda}^{+} - q_{r\lambda}^{-}) d\lambda$$

Heat transfer in translucent TBC

- IR camera reading:

$$E(t) = N(1 - \rho^{i}) \int_{3}^{5} [q_{r\lambda}^{-}(0, t) - q_{r\lambda}^{-}(0, 0)] d\lambda$$

A complete solution was derived

Preliminary Results for A Translucent TBC

Predicted thermal conductivity k and heat capacity pc images for a TBC sample at translucent and "opaque" conditions

- Predicted properties for translucent TBC are consistent with those of "opaque" TBC (for the same TBC sample)
- A paper is being prepared

Multilayer (>=2) TBCs

- Multilayer TBCs are being developed to extend functionality (eg, erosion) or higher-temperature capabilities of current TBCs
- A collaboration has been established with Dr. Sampath at Stony Brook Univ. for NDE study of multilayer TBCs
 - Dr. Sampath's group is developing multilayer TBCs under a DOE FE project

From: Dwivedi, Viswanathan, and Sampath (2013)

Thermal Imaging for Double-Layer TBCs

- Many double-layer TBCs or coatings are of interests
- Initial effort was on measuring 2-layer-averaged TBC property
- Current effort is on measuring coating properties for each layer
 - MLA method was extended to 2-layer coating systems
 - Preliminary tests were conducted data need verification

Four types of double-layer coating configurations

TBC + bond coat	LZO + 7YSZ	CMAS + 7YSZ	TBC + delamination
Ceramic top coat	$La_2Zr_2O_7$	CMAS	Ceramic top coat
(7YSZ) Bond coat	7YSZ	7YSZ	(7YSZ)
Metallic substrate	Metallic substrate	Metallic substrate	Metallic substrate

Prediction of Double-Layer TBC Properties

TBC Property Measurement for a Turbine Blade

TBC Thickness Predictions

Metallic coating property/thickness prediction

Thermal effusivity

Presentation Topics

- Development and application of multilayer analysis MLA method
 - Validation of MLA measurement accuracy
 - Effect of surface paint on TBC property measurement
 - Theoretical development for translucent TBCs
 - Theoretical development for double-layer TBCs
 - Application for a turbine blade
- NDE for TBC life prediction
 - Crack/delamination progression

Tests for APS TBC Sample (SB Univ.)

120hr

Exposed at 1100°C

484hr

Measured thermal conductivity images

0.6W/m-K

1.2W/m-K

Delamination (low conductivity dark regions) development at edge and internal

Thermal Tomography Images

Summary

- Thermal imaging multilayer analysis (MLA) method development:
 - Absolute accuracy of 2% was demonstrated MLA is ready for TBC studies
 - Developments for translucent and double-layer TBCs are successful
 - Successfully applied for testing of industrial components
- NDE for TBC life prediction:
 - Thermal tomography is successful for detect delamination growth

Planned Future Efforts

- Continued evaluation of NDEs for TBC lifetime prediction
 - Collaborations with Siemens and Stony Brook Univ.
- Thermal NDE method development for complex TBC systems:
 - For complex coatings: translucency, multilayer
 - Evaluation of measurement accuracy for TBC thermal conductivity, thickness, density/porosity
 - Improving crack/delamination resolution
- Tech transfer to industry

