

High Temperature Thermoelectric Oxides Engineered at Multiple Length Scales for Energy Harvesting

Grant No. DE-FE0007272

(Oct 1, 2011-Sept 30, 2014) Program Manager: Patricia Rawls

Fumio S. Ohuchi¹ (PI) and Rajendra K. Bordia²(Co-PI)
 Department of Materials Science and Engineering
 ¹University of Washington, Seattle, WA
 ²Clemson University, Clemson, SC

Graduate Students: Christopher Dandeneau and YiHsun Yang

May 21, 2014 NETL Crosscutting Research Review Meeting

Introduction/Motivation for Research

- >60% of energy produced in U.S dissipated into environment as heat
- **Thermoelectric (TE) generator:** Convert waste heat into electrical power via the Seebeck effect

Interplay of three conflicting parameters:

- Seebeck coefficient S
- Electrical conductivity σ
- Thermal conductivity K

 $Efficiency \equiv \frac{\sigma \bullet S^2}{2}$

You want *Efficiency* 1 You need $\sigma \uparrow$, $S \uparrow \kappa \downarrow$ at all T

 σS^2

Searching materials/conditions that exhibit $\sigma \uparrow , S \uparrow$ and $\kappa \Downarrow$ is an outstanding problem in Materials Science and Physics.

Current Thermoelectric Materials

	Materials	$S(\mu V/K)$	$\rho \left(\Omega \mathrm{cm} \right)$	<i>K</i> (W/mK)	zT	
<i>р</i> -Туре	Yb ₁₄ MnSb ₁₁	185	0.0054	0.7	$\sim 1 (1200 \text{ K})^{38}$	•
	0.23B-0.77Si _{0.8} Ge _{0.2}	168	0.001219	4.1	$\sim 0.62 (1200 \text{ K})^{39}$	
	NaCo ₂ O ₄ (crystal)	100	0.0002	2 (poly)	0.75	
	$Na_x Co_2 O_4$	100	0.0063	Non-sto	ichiometric	
	(plate morphology cera	177	0.0073	Na.Co ₂	$D_{4,s}$ is so far	Na _{0.5}
	Na _{1.5} Co _{1.8} Ag _{0.2} O ₄	101	0.0066	a cham	oion material	
	LaCoO ₃	635	15.6	in p-typ	e.	Co
	La _{0.98} Sr _{0.02} CoO ₃	330	0.265	(PRB56(1997)R	.12685)	NaCo ₂ O ₄ (Na _{0.5} CoO ₂)
	Bi2Te3	-200	0.001		1.2^{44}	•
<i>п</i> -Туре	0.59P-0.41Si _{0.8} Ge _{0.2}	-171	0.00074	4.2	$\sim 1.15 (1200 \text{ K})^{39}$	
	$Sr_{0.98}La_{0.02}TiO_3$	-260	0.001	11	0.1845	
	$Sr_{0.9}Dy_{0.1}TiO_3$	-190	~ 0.0028	~2.6	$0.22 (573 \text{ K})^{46}$	
	Thin film	-200		3	$0.37 (1000 \text{ K})^{33}$	
	$\begin{array}{l} SrTi_{0.8}Nb_{0.2}O_{3}\\ Zn_{0.98}Al_{0.02}O \end{array}$	-220	0.001	8 (1073 K)	$0.65(1250 \text{K})^{47}$ ~0.16 (550 K)	

<u>*p*-type oxides</u>

<u>*n*-type oxides</u>

Holes generated by oxygen excess

$$\frac{1}{2}O_2 \rightarrow V_M'' + 2h^{\bullet\bullet} + O_0^x$$

Oxygen deficiency results in excess electrons

$$O_0^x \rightarrow V_0^{\bullet \bullet} + 2e' + \frac{1}{2}O_2$$

Good stability in air at high *T*

Stability often poor at high *T* in air **Development of n-type oxide materials is still behind.**

This Project (DE-FE0007272)

(Oct 01, 2011 – Sept 30, 2014)

Overall Goal:

Investigate potential materials and processing technology of n-type oxides with high TE performance using combination of the developed material compositions and hierarchical designed microstructures.

Technical Objective:

- Exploit unique crystallographic structure to optimize the thermoelectric properties of oxide materials.
- **Tungsten-bronze** crystal structure represented by ferroelectric strontium-barium-niobate ($Sr_xBa_{1-x}Nb_2O_6$) as a prototype system.
- Develop processing routes to make desired crystalline phases and aniso-tropic porous structure to evaluate the effect of micro- and macro-pores on thermoelectric properties.

Presentation Outline

After 2.5 years of research under this grant

• Materials development

Strontium barium niobate (SBN)Processing and structureUnderstanding cation site occupancy

• Thermoelectric properties of SBN

TE behavior Local electronic environment/structure Conductivity and stability

• Materials engineering

- Microstructural aspects Multi-length scale engineering
- Future perspectives (i.e. rest of 6 months)

Tetragonal Tungsten Bronze(TTB) Structure

Strontium-Barium Niobate: $Sr_xBa_{1-x}Nb_2O_6$

- Complex disordered structure for low κ
- Wide range of compositions by varying *x* or doping
- Polarization occurs along polar c-axis: explore possible ferroelectric-TE coupling

Strontium Barium Niobate (SBN)

- $Sr_xBa_{1-x}Nb_2O_6$ (SBN100*x*): *n*-type relaxor ferroelectric with broad ferroelectric to paraelectric transition
 - Extensively studied for electro-optic/photorefractive applications
 - > <u>Congruent composition</u>: $Sr_{0.61}Ba_{0.39}Nb_2O_6$ (SBN61)
 - > <u>Phase stability region</u>: 0.25 < x < 0.75 (?)
 - Composition-dependent phase transition temp.
 - Electrically conductive with annealing in reducing environment
- Reduced SBN for TE applications
 - ► High power factor (PF = $20 \mu W/cm \cdot K^2$) parallel to polar *c*-axis in SBN61_{SC}*

Motivation to study TE behavior of polycrystalline SBN: Start with structure

*Lee et al., Appl. Phys. Lett. 93, 031910 (2010)

Combinatorial Materials Exploration(CME) FY-1

A paradigm to explore large multi-variant materials spaces that enables screening and understanding complex material systems in a time/cost-effective manner.

Bulk Synthesis of SBN(x)

- Need single phase and nano-sized homogeneous powders for fabricating dense textured polycrystalline pellets.
- Conventional solid-state synthesis suffers from issues related to phase purity and efficiency.

Solution Combustion Synthesis (SCS)

A self-sustaining exothermic reaction to form a desired material

Aqueous Sr-

nitrate precursor

Urea (fuel)

- Reactions between metal salts (nitrates) and a suitable fuel (urea) in a **homogenous solution**
- Sufficient intermixing of metal cations due to the use of liquid precursors.
- Fast reaction times and ability to produce nanopowders with uniform particle size and high phase purity

Aqueous Nb-

oxalate precursor

Ammonium

nitrate (oxidizer)

Aqueous Ba-

nitrate precursor

Homogenous

combustion solution

Preheated Furnace

SBN powder

Cation Site Occupancy in SBN

- Only one Ba $3d_{5/2}$ peak observed: Ba occupying A2 site only
- Two Sr $3d_{5/2}$ peaks appear: Sr occupying both A1 and A2 sites with BE difference of ~1eV

Which Sr site corresponds to higher BE peak?

Cation Site Occupancy in SBN

- Five formula units per $(A1)_2(A2)_4(C)_4(B1)_2(B2)_8O_{30}$ unit cell
- For $Sr_{0.2}Ba_{0.8}Nb_2O_6$ (SBN20): Ba occupying all A2 sites
- No higher BE peak for SBN20 \longrightarrow corresponds to A2 site

Reduction of SBN in Ar/5%-H₂

- As-sintered SBN samples possess very low σ
- Annealing in reducing environment creates oxygen vacancies:

$$O_0 \rightarrow V_0^{\bullet \bullet} + 2e' + \frac{1}{2}O_2(g)$$

- Increase of σ by *e* donated back to Nb to preserve electroneutrality.
- For SBN50: $\operatorname{Sr}_{0.5}\operatorname{Ba}_{0.5}\operatorname{Nb}_{2}\operatorname{O}_{6} \rightarrow \operatorname{Sr}_{0.5}\operatorname{Ba}_{0.5}\operatorname{Nb}_{2-y}^{5+}\operatorname{Nb}_{y}^{n+}\operatorname{O}_{6-\delta} + \frac{\delta}{2}\operatorname{O}_{2}$

Reduced SBN: Sr/Ba XPS Spectra

FY-3

776

TGA: Oxygen Uptake

- TGA gives us two key pieces of information:
- 1) Maximum reduction in Nb valence (powder vs. dense pellet)
- 2) Temperature at which reduced state degrades in air

Vacancy Formation Enthalpy

$$O_0 \rightarrow V_0^{\bullet \bullet} + 2e' + \frac{1}{2}O_2(g)$$

• Equilibrium constant (K_{re}) and electroneutrality condition gives:

300 K: ∆*h* = 3.85 eV

$$[V_{O}^{\bullet\bullet}] = K_{2} \exp\left(-\frac{\Delta h}{3kT_{Re}}\right) \text{ where } K_{2} = K_{1}^{\frac{1}{3}} 4^{-\frac{1}{3}} (pO_{2})^{-\frac{1}{6}}$$

• From $\sigma = en\mu_{e}$ $\ln\sigma = \left(\frac{1}{T_{Re}}\right) \left(-\frac{\Delta h}{3k}\right) + \ln K_{3}$ where $K_{3} = 2K_{2}e\mu_{e}$

Assumptions:

- 1) Defect state is "frozen" in upon quenching
- 2) Mobility does not vary significantly among samples at measuring T

between 1100 – 1300 °C

- (3) For T to ~600K (N₂ red), $\sigma \uparrow along with /S/\uparrow \uparrow$
- (4) κ after reduction increases by ~50% due to increases in the free carriers.

Difference Between N₂/H₂ and Ar/H₂ Reduction

Further look into reduction with $N_2/5\%-H_2$ ^{FY-2}

- Power Factor ($\sigma \cdot S^2$) max. at 1000C-red
- Parallel rise in |S| and σ up to ~630 K
- Change in sign of $d\sigma/dT$ at higher T
- Loss of nanodomains?
- T_B for SBN61 = 620 650 K*
- Appearance of Nb^{+(2-δ)} as a protocol to ascertain "ideal" reduction conditions.

Stability: Repeated Testing

Factors contributing to the changes of polycrystalline sample

- Partial oxidation of the grain boundaries?
- Removal of the boundary passivation, such as hydrogen adsorbed at dangling bonds?

Stability: Incremental Heating/Cooling

At what point does σ of polycrystalline SBN begin to degrade?

- Upon cooling from 450, 550 K, almost no change in σ observed
- Above 550 K, notable decrease in $d\sigma/dT$ and degradation of σ values with cooling are evident |S| exhibits no change
- Further experiments are planned to look at effects of time and reduction in hydrogen-free environments

SBN50 Powder Sinterability

<u>Conventional Sintering (CS)</u> <u>Spark Plasma Sintering (SPS)</u> <u>Spark Plasma Sintering (SPS)</u>

Sinter-Forging (SF)

FY-1, 2

Sintering Powder particles

- Pressureless-sintering
- Varied density
- Possible grain growth (abnormal grain growth)

- Pressure + Electrical Current in vacuum
- Extremely fast sintering times (<10 min)
- High density with fine-grains (<250 nm)
- CS + uniaxial pressure.
- High density.
- Textured grains

 $\rho = 93\%\rho_{\rm th}$

Sintering of SCS Powder: SBN50

On-going work (1): Nano-Micro Composites FY-3

- Reduction in grain size adversely affects electron mobility
- Research into nano-micro composites to scatter phonons and preserve σ
- Percolation effect: Charge carriers "select" low resistivity path while phonons scattered by nanoparticles

SBN50 nano-micro composites

On-going work (2): Texture by Sinter-forging FY-3

- Texturing successfully achieved by sinter-forging at 1300 °C
- Increase in *T* from 1250 to 1300 °C; (311):(002) ratio decreased from 1.46 to 0.12
- Enhanced TE properties expected for SBN along c-axis (in progress).

On-going work (3): Chemical Reduction

Currently developing strategy to chemically reduce SBN through incorporation of heteroatom dopants with higher valency than Nb.

$$MO_{3} \xrightarrow{SBN} M_{Nb}^{\bullet} + e^{-} + 3O_{0}^{x} \qquad O_{0} \rightarrow V_{0}^{\bullet\bullet} + 2e' + \frac{1}{2}O_{2}(g)$$
where M= +6 ion, such as W⁺⁶, Mo⁺⁶
Chemical reduction without removing O
SBN50 A2 A1
W:SBN50
Sr₀sBa₀sW₀2Nb₁sO₅ A1
W:SBN50 A2 A1
Sr¹0 Ba₀sW₀2Nb₁sO₅ A1
W:SBN50 A2 A1
Sr²-δ³0 W⁺⁶ W⁺⁶ A1
Sr²-δ³0 W⁺⁶ W⁺⁶ Sr^{+2-δ³0 W⁺⁶ W⁺⁶ Sr^{+2-δ³0 W⁺⁶ W⁺⁶ Sr^{+2-δ³0 W⁺⁶ Nb^{+5-δ} Sr^{+2-δ³0 W⁺⁶ W⁺⁶ Sr^{+2-δ³0 W⁺⁶ Sr^{+2-δ³0 W⁺⁶ W⁺⁶ Sr^{+2-δ³0 W⁺⁶ Sr^{+2-δ⁴} Sr^{+2-δ⁴0 W⁺⁶ Sr^{+2-δ⁴0 W⁺⁶ Sr^{+2-δ⁴} Sr^{+2-δ⁴0 W⁺⁶ Sr^{+2-δ⁴} Sr^{+2-δ⁴0 W⁺⁶ Sr^{+2-δ⁴} S}}}}}}}}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

Overall Summary

- Suitable methods to fabricate and reduce polycrystalline SBN specimens with range of compositions were devises
- Fundamental insight was gained into site occupancy and the effect of reduction on local cation environments
- TE data was successfully obtained; a change in sign of $d\sigma/dT$ was noted and a parallel rise in |S|, σ were observed
- Thermally activated polaron hopping was shown to be a likely σ mechanism in SBN
- A degradation in σ was noted for SBN after initial testing, and a possible mechanism related to grain boundary passivation from reduction was identified

To finish this project

- Micro-nano composites for optimizing TE properties
- Texturing experiments to exploit SBN anisotropy
- Chemical reduction (i.e dopants) to increase the electrical conductivity

List of Publications

"Thermoelectric properties of reduced polycrystalline Sr_{0.5}Ba_{0.5}Nb₂O₆ fabricated via solution combustion synthesis", authored by *Christopher S. Dandeneau, Tyler W. Bodick, Rajendra K. Bordia, and Fumio S. Ohuchi*, **Journal of the American Ceramic Society**, **96** (2013) 2230-7.

"Site occupancy and cation binding states in reduced polycrystalline Sr_xBa_{1-x}Nb₂O₆" Christopher S. Dandeneau, YiHsun Yang, Benjamin W. Krueger, Marjorie A. Olmstead, Rajendra K. Bordia and Fumio S. Ohuchi; *Applied Physics Letter* 104, 101607 (2014).

"Correlation of thermoelectric properties with local electronic and chemical environments in reduced polycrystalline $Sr_xBa_{1-x}Nb_2O_6$ " *Journal of Applied Physics* in preparation.

"Thermoelectric properties of reduced polycrystalline $Ca_x Ba_{1-x} Nb_2 O_6$ and the effect of polarized nanodomains" *Journal of Vacuum Science and Technology A* in preparation.

"High temperature Seebeck tester" Review of Scientific Instruments in preparation.

Thank you!