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Introduction/Motivation for Research

TE generator

Waste      Heat

• >60% of energy produced in U.S dissipated into 
environment as heat

• Thermoelectric (TE) generator: Convert waste 
heat into electrical power via the Seebeck effect

Interplay of three conflicting parameters:
• Seebeck coefficient       S
• Electrical conductivity  

• Thermal conductivity    

Efficiency    S 2
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You want Efficiency 
You need  , S  at all T

But normally  , S,   (conflicting)�����������

Searching materials/conditions that exhibit  S and
is an outstanding problem in Materials Science and Physics.



Current Thermoelectric Materials

Non-stoichiometric 
NaxCo2O4- is so far
a champion material 
in p-type.
(PRB56(1997)R12685)

p-type oxides n-type oxides
Holes generated by oxygen excess       Oxygen deficiency results in excess electrons

Good stability in air at high T Stability often poor at high T in air
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Development of n-type oxide materials is still  behind. 



This Project (DE-FE0007272)
(Oct 01, 2011 – Sept 30, 2014)

Overall Goal:  
Investigate potential materials and processing technology of n-type 
oxides with high TE performance using combination of the developed 
material compositions and hierarchical designed microstructures.

Technical Objective: 
• Exploit unique crystallographic structure to optimize the thermo-
electric properties of oxide materials.

• Tungsten-bronze crystal structure represented by ferroelectric 
strontium-barium-niobate (SrxBa1-xNb2O6) as a prototype system.

• Develop processing routes to make desired crystalline phases and 
aniso-tropic porous structure to evaluate the effect of micro- and 
macro-pores on thermoelectric properties.  



Presentation Outline
After 2.5 years of research under this grant 

• Materials development
Strontium barium niobate (SBN) 
Processing and structure
Understanding cation site occupancy

• Thermoelectric properties of SBN
TE behavior 
Local electronic environment/structure 
Conductivity and stability

• Materials engineering
Microstructural aspects
Multi-length scale engineering 

• Future perspectives (i.e. rest of 6 months)



Strontium-Barium Niobate: SrxBa1-xNb2O6

• Complex disordered structure for low 

• Wide range of compositions by varying x or doping

• Polarization occurs along polar c-axis: 
explore possible ferroelectric-TE coupling

Tetragonal Tungsten Bronze(TTB) Structure

(A1)2(A2)4(C)4(B1)2(B2)8O30

• Tetragonal A1: Sr only
• Pentagonal : Sr or Ba 
• Octahedral B1, B2: Nb
• Trigonal C = Vacant
*1/6 of total A1+A2 sites vacant  



Strontium Barium Niobate (SBN)

*Lee et al., Appl. Phys. Lett. 93, 031910 (2010)

• SrxBa1-xNb2O6 (SBN100x): n-type relaxor ferroelectric with broad 
ferroelectric to paraelectric transition
 Extensively studied for electro-optic/photorefractive applications
 Congruent composition: Sr0.61Ba0.39Nb2O6 (SBN61)

• Reduced SBN for TE applications
 High power factor (PF = 20 W/cm·K2) parallel 

to polar c-axis in SBN61SC*

Zhang et al., Ceram. Int. 39, 1971 (2013) 
SBN50

r

SBN45

SBN40

SBN30

T (°C)

Tm

 Phase stability region: 0.25<x<0.75 (?)

 Composition-dependent phase transition temp.

 Electrically conductive with annealing in 
reducing environment

Motivation to study TE behavior of 
polycrystalline SBN: Start with structure



Combinatorial Materials Exploration(CME)
A paradigm to explore large multi-variant materials spaces that enables screening
and understanding complex material systems in a time/cost-effective manner.

SrxBa 1-x Nb2O6 (SBN) 

SrNb2O6 BaNb2O6
Pulsed Laser Deposition (PLD)
Graduate student:  Chris  Dandeneau
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SrxBa 1-x Nb2O6
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SBN
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Sr3d
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CME Library of SBN(x)

XPS:  composition XRD:  structure

BaNb2O6

SrNb2O8

BaNb2O6

SrNb2O8

FY‐1



Bulk Synthesis of SBN(x)
• Need single phase and nano-sized homogeneous powders for fabricating dense 

textured polycrystalline pellets.

• Conventional solid-state synthesis suffers from issues related to phase purity and 
efficiency.

Solution Combustion Synthesis (SCS)
A self-sustaining exothermic reaction to form a desired material

•  Reactions between metal salts (nitrates) and a suitable  
fuel (urea) in a homogenous solution

•  Sufficient intermixing of metal cations due to the 
use of liquid precursors.

•  Fast reaction times and ability to produce nano-
powders with uniform particle size and  high phase  
purity

Example:  SrxBa1-xNb2O6 (SBN50)
223454222323 )NH(CO

3
5NONH5)OC(Nb)NO(Ba5.0)NO(0.5Sr 

Z

222620.50.5 N
3
23OH

3
40CO

3
35ONbBaSr 

FY‐1



Secondary phase

20                             25                              30                             35                           40

SrxBa1-xNb via Solid State Processing

SrxBa 1-x Nb2O6 (SBN) 

• No secondary phases

Sr0.5Ba0.5Nb2O6 (SBN50)

99900C

800C

700C

Crystallinity and Phase Purity

FY‐1SrxBa1-xNb2O6 via SCS

SBN20 

SBN30 

SBN50 

SBN61 

SBN80 



• Only one Ba 3d5/2 peak observed: Ba occupying A2 site only
• Two Sr 3d5/2 peaks appear: Sr occupying both A1 and A2 sites with 

BE difference of ~1eV

Which Sr site corresponds to higher BE peak?

Cation Site Occupancy in SBN
e-

h

FY‐2, 3

Ba
Sr

A2 A1

Fractured surface (interior)

C. Dandeneau et al., Appl. Phys. 
Lett. 104, 101607 (2014)



• Five formula units per (A1)2(A2)4(C)4(B1)2(B2)8O30 unit cell
• For Sr0.2Ba0.8Nb2O6 (SBN20): Ba occupying all A2 sites
• No higher BE peak for SBN20       corresponds to A2 site

A2 A1

c

A1 A2

CN = 12 CN = 15
Larger coordination number (CN) 

for Sr at A2 site

Lower electron density, higher BE

Cation Site Occupancy in SBN FY‐2, 3



Unreduced SBN50
Reduced in Ar/5% H2
(1000C-25h)

NbO2

• 
• 

• • • • • • • • • • • • 
Binding Energy (eV)

Nb 3d3/2

Nb 3d5/2

XRD XPS

Nb+4

• Increase of  by e- donated back to Nb to preserve electroneutrality.

• For SBN50:

Reduction of SBN in Ar/5%-H2
• As-sintered SBN samples possess very low 
• Annealing in reducing environment creates oxygen vacancies:
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Reduced SBN: Sr/Ba XPS Spectra
1000 °C reduction 1000 °C reduction

• Only A2 peaks shift to 
lower BE for Sr, Ba.

• No shift in A1 peak.

• Suggest which O is 
removed

FY‐3

Sr(A2)Ba(A2)

A2 A2

O(4c)
• Preferential oxygen vacancy formation at 4c 

site could increase electron density.
• Oxygen in 4c site calculated to have lowest 

vacancy formation energy*
*Baetzold et al., Phys. Rev. B 48, 9 (1993)

e e
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• TGA gives us two key pieces of information:
1) Maximum reduction in Nb valence (powder vs. dense pellet)
2) Temperature at which reduced state degrades in air

Powder reduced for 5 h 
at 1000 °C in N2/H2: 

pO2 ~10-21 atm

Onset of oxidation: 
250 - 300 °C

Weight gain due to 
oxygen uptake: 1.52%

Value of  in
Sr0.5Ba0.5Nb2O6-: 0.36

Valence of Nb from 
charge balance: 4.64

Temp. profile

Weight 
gain

TGA: Oxygen Uptake FY‐3



Vacancy Formation Enthalpy

• Equilibrium constant (Kre) and electroneutrality condition gives:
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Assumptions:
1) Defect state is “frozen” in upon quenching

2) Mobility does not vary significantly among 
samples at measuring T

 h~3.6-3.9eV

Sr+2-
Nb+4-

O-vacancy
[A2]

Ref.

For BaTiO3: h = 5.24 eV
at pO2 at 10-12 and TRe
between 1100 – 1300 °C

FY‐3



Electrical conductivity ()                  Seebeck Coefficient (S)                    Power factor (P=• S2)

Ar/5%-H2

N2/5%-H2

d
dT

 0
d
dT

 0

Findings
(1) Overall TE performance:  (N2/5%-H2 red) > (Ar/5%-H2 red)

(2) Around  T~600K, sign of  changes from            to

(3) For T to ~600K (N2 red),   along with |S|

after reduction increases by ~50% due to increases 
in the free carriers.

TE Properties of Reduced SBN50
Reduction in Ar/5% H2 versus  N2/5%H2

FY‐1,2



XPS : different degree of reduction

204206208210212
Electron Binding Energy (eV)

25h
10h

3h
1h

Nb3d3/2 Nb3d5/2

Difference Between N2/H2 and Ar/H2 Reduction

(321) (520) (530) (600)

(321) (520) (530) (600)

25 hrs reduction

10 hrs reduction

3 hrs reduction

XRD before and after reduction in N2/H2

~3.5 eV

209  208   207     206    205     204    203    202   

Nb2O5

Nb
NbN

NbO

3.5eV

XPS Reference Eb for Nb compounds

(111)NbN (200)NbN

FY‐2, 3

25 h reduction
in Ar/5%H2

Nb+4

?

SBN (SC) and NbN: (Metallic) 
Enhancement of TE performance 

via “Composite Effect”?



Further look into reduction with N2/5%-H2

1000˚C

1050˚C

900˚C

1100˚C

Findings
• Power Factor (•S2) max. at 1000C-red.

• Parallel rise in |S| and  up to ~630 K

• Change in sign of d/dT at higher T         

• Loss of nanodomains?

• TB for SBN61 = 620 – 650 K* 

0
dT
d

0
dT
d

Nb 3d5/2

212 210            208           206          204           202         200

Nb+5

Reduced
Nb+5

5+ 4+ 3+ 2+ 1+

SBN50: Nb 3d XPS
Nb
+1

+2

+3

+4

+5

After subtracting Nb5+
Nb+(4-) Nb+(2-)

•   Appearance of Nb+(2-) as a protocol to 
ascertain “ideal” reduction conditions.   

Best n‐type material known
CaMnO3    PF~1 W/cm‐K2

FY‐2



Electrical Conductivity Behavior(1)

Nb4+ Nb5+ Nb5+ Nb4+

e-

At low T, electrons hop 
to more distant site with 
smaller potential barrier

])/(exp[ 1
1
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 dTT

T0 = Characteristic T coeff.
0 = Pre-exponential factor
d = Dimensionality of hopping
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Electrons migrate by hopping 
out of self-induced potential 
well to neighboring site

A = Pre-exponential factor
Ea = Activation E for hopping
m = 1 (adiabatic) or 3/2 (non-adiabatic)

Variable range hopping (VRH) Nearest-neighbor small polaron
hopping (SPH)

FY‐3

• Adiabatic small polaron hopping:
• Charge carrier density and mobility

n = 1.7 × 1021 cm-3

e = 0.1 cm2/V·s
at 400K for N2 reduction

Nearest-neighbor small polaron
hopping (SPH)



Why change in sign:  d/dT>0 to d/dT<0?

Possibility (2)Possibility (1)

At higher T,  decreases 
with decreased mobility     
by scattering?  

Mobility measurement with T
(Currently in progress)  

Tc TBT’c T’B 

?
Temp

El
ec

C
on

d

Electrical Conductivity Behavior(2)

d
dT

 0
d
dT

 0

Use FE materials with higher Tc
to test TB effect.

• Mott insulator-metal transition? 
Ferroelectric nanodomains
Paraelectric regions

• For T>TB, left with metal-like
paraelectric phase 

FY‐3

CaxBa1-xNb2O6, CBN100x

TB (SBN)

TB (CBN)

CBN materials Tc TB
Ca0.18 Ba0.78Nb2O6 ~600    ~1200

Ca0.35 Ba0.65Nb2O6 ~493    ~1050



Stability: Repeated Testing

Reduced for 25 hrs
in N2/H2 at 1000 °C

SBN61 single

Reduced for 25 hrs
in N2/H2 at 1000 °C

SBN50  polycrystalline

Factors contributing to the changes of polycrystalline sample
• Partial oxidation of the grain boundaries?
• Removal of the boundary passivation, such as hydrogen adsorbed at dangling bonds?

Deviation from SPH fit 
decreases during retesting

FY‐3



Stability: Incremental Heating/Cooling

• Upon cooling from 450, 550 K, almost no change in  observed
• Above 550 K, notable decrease in d/dT and degradation of 

values with cooling are evident - |S| exhibits no change
• Further experiments are planned to look at effects of time and 

reduction in hydrogen-free environments

SBN50 reduced for 
25 hrs at 1000 °C

Temperature profile

At what point does  of polycrystalline SBN begin to degrade?

FY‐3



SBN50 Powder Sinterability

• Pressure + Electrical Current in vacuum
• Extremely fast sintering times (<10 min)
• High density with fine-grains (<250 nm)

• Pressureless-sintering
• Varied density 
• Possible grain growth

(abnormal grain growth)

Conventional Sintering (CS) Spark Plasma Sintering (SPS) Sinter-Forging (SF)

• CS + uniaxial pressure. 
• High density. 
• Textured grains

 = 93%th

10m1m

 > 97%th ~ 80%th

Sintered 25˚C above previous T



FY‐1, 2



Sintering of SCS Powder: SBN50
Sintered at 1250 °C for 4 h Sintered at 1250 °C for 24 h

20 m 20 m

3 m 3 m

~74% relative density ~88% relative density

FY‐1



On-going work (1): Nano-Micro Composites

• Reduction in grain size adversely affects 
electron mobility

• Research into nano-micro composites to scatter 
phonons and preserve 

• Percolation effect: Charge carriers “select” low 
resistivity path while phonons scattered by 
nanoparticlesCoSb3

Mi et al., App. Phys. Lett. 91, 172116 (2007)

2 m 2 m2 m

(a) (b) (c)nm-SBN50 m-nm SBN50 m-SBN50
SBN50 nano-micro composites

FY‐3



On-going work (2): Texture by Sinter-forging

(311): Largest intensity 
in polycrystalline SBN

Sinter-forging at 1300 °C 
with 10 MPa of pressure

Anistropic grain growth and (00l) 
texturing induced by uniaxial loading

• Texturing successfully achieved by sinter-forging at 1300 °C
• Increase in T from 1250 to 1300 °C; (311):(002) ratio decreased from 

1.46 to 0.12
• Enhanced TE properties expected for SBN along c-axis (in progress).

*Lee et al., Appl. Phys. Lett. 93, 031910 (2010)

FY‐3



On-going work (3): Chemical Reduction FY‐3

Currently developing strategy to chemically reduce SBN 
through incorporation of heteroatom dopants with higher 
valency than Nb.

MO3
SBN  MNb

•  e 3OO
x )(O

2
1e2O 2OO gV  

where M= +6 ion, such as W+6, Mo+6

Chemical reduction without removing O Physical reduction by removing O

Sr+2-
Nb+5-

O-vacancy
A2

130132134136138140
Binding Energy (eV)

0.75 eV

1.02 eV

SBN50

W:SBN50
Sr0.5Ba0.5W0.2Nb1.8O6
(S50W1N9)

A1A2 A1

Sr+2-� W+6

New Mechanism 
of Reduction



Overall Summary 
• Suitable methods to fabricate and reduce polycrystalline SBN 

specimens with range of compositions were devises
• Fundamental insight was gained into site occupancy and the effect of 

reduction on local cation environments
• TE data was successfully obtained; a change in sign of d/dT was 

noted and a parallel rise in |S|,  were observed
• Thermally activated polaron hopping was shown to be a likely 

mechanism in SBN
• A degradation in  was noted for SBN after initial testing, and a 

possible mechanism related to grain boundary passivation from 
reduction was identified

To finish this project 
• Micro-nano composites for optimizing TE properties
• Texturing experiments to exploit SBN anisotropy
• Chemical reduction (i.e dopants) to increase the electrical conductivity
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