Multi-Scale Computational Design and Synthesis of Protective Smart Coatings for Refractory Metal Alloys

John H. Perepezko (PI), Otto J. Lu-Steffes Dept. Materials Science & Engineering, University of Wisconsin-Madison Grant Number: FE0007377 Performance Period: June 2013-May 2014

2014 NETL Crosscutting Research Review Meeting Sheraton Station Square Hotel Pittsburgh, PA USA

Outline

- Background
- Research Accomplishments
 - Mo-Si-B coating development for Nb alloys
 - Zr additions to Mo-Si-B coating
- Future Work
- Concluding Remarks

Background

- Ni-based superalloys provide the necessary structural strength while at the same time remaining oxidation resistant in combustion systems
- Other high temperature materials must be explored because Ni-based superalloys are reaching their limit in operational temperature
- Protective coatings necessary for increased oxidation performance

Core power output vs. inlet temperature for gas turbine engines [1]

[1] J.H. Perepezko, Science, 326 (2009) 1068-1069.

Background

- Refractory metals are have higher melting points than current nickel-base superalloys.
- Refractory metals readily oxidize at high temperatures forming metal oxides that drastically reduce the integrity of the metal
- Prospective alloys are Nb-based alloys consisting of Hf, Ti, Cr, Ge, Al, B, and Si additions

Main alloying addition	Function
Si	Aid in creep and oxidation resistance resistance (Nb ₅ Si ₃ , Nb ₃ Si)
Ti (~25 at.%)	Formation of Nb_2O_5 ·TiO ₂ to reduce oxidation rate of alloy [2]
Cr (~8 at.%)	Formation of Cr ₂ Nb Laves phase, aiding in oxidation resistance (CrNbO ₄ during oxidation) [3][4]
Ge/B	Reduce viscosity of silica glass

Oxidation of Nb alloys in air at 1100°C [5]

[2] R. Smith, Journal of the Less Common Metals, 2 (1960) 191-206.

[3] P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, M.A. Stucke, Materials

Science and Engineering: A, 239–240 (1997) 1-13.

[4] K.S. Chan, Metall Mater Trans A, 35A (2004) 589-597

[5] R. Smith, Journal of the Less Common Metals, 2 (1960) 191-206

Background

- While alloy additions to Nb have shown increased oxidation resistance the long term goal of these alloys is still out of reach
 - Long term goal operational temperature of 1315°C with <25µm material loss in 100 hrs
- Nb produces 3 different oxides: Nb₂O₅, NbO₂, NbO [6]
- Protective coatings necessary for increased oxidation performance
 - Retain ductility in Nb alloys

Mass Loss Rate vs. Temperature for Nb alloys [7]

[6] E.A. Gulbransen, K.F. Andrew, Journal of The Electrochemical Society, 105 (1958) 4-9
[7] B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, Metal Mater Trans A, 34A (2003) 2043-2052.

Background: Current Protection Methods

- Current protection methods are based on silicide coatings that produce a protective silica layer
 - Due to selective oxidation of Si
- A study by Kurokawa et al. showed that disilicides would either form a protective SiO₂ scale or a non protective mixed oxide scale depending on the temperature during oxidation (Table 1) [8]
 - Refractory metal disilicides (MoSi₂, WSi₂) also form trioxide, which is either stable or volatile depending on temperature and partial pressure of O₂

Oxide scale structure	Silicide	Oxid. resistance	Temp. region
	FeSi ₂	Ø	<1273K
SiO ₂ scale	CoSi ₂	Ø	<1273K
L	MoSi ₂	Ø	>1073K
	WSi ₂	Ø	>1573K
	VSi ₂	0	>1173K
	ReSi _{1.75}	Δ	>1273K
	ReSi _{1.75}	×	<1273K
Double layer scale	CrSi₂	Ø	<1373K
		×	>1473K
	NbSi ₂	×	<1773K
	TaSi₂	×	<1773K
Mixed oxide scale	MoSi ₂	×	773—1073K
	WSi ₂	×	1073—1573K
	VSi ₂	0	<1173K
	TiSi₂	×	>773K
	Ti ₅ Si ₃	×	>773K
© Exce	ellent O G	ood \triangle poo	or × very poor

Table 1 Structure of oxide scale on disilicide and oxidation resistance.

[8] K. Kurokawa, A. Yamauchi, Solid State Phenomena, 127 (2007) 227-232.

Mo-Si-B Coatings for Oxidation Protection

- The Mo-Si-B system has been proven to provide oxidation protection in a temperature range of 1200-2000°C
 - T₁ phase serving as a source of Si and B to enable a self-healing capability [10].
 - T₂ phase serving as a diffusion barrier to inhibit dissolution of the coating into the substrate
- Mo-Si-B coatings have been applied to other refractory metal substrates and cermets to provide enhanced oxidation protection [11,12]
 - Suggests coatings can be extended to Nb base systems

[10] R. Sakidja and J. H. Perepezko, "Phase Stability and Alloying Behavior in the Mo-Si-B System", v. 36A, Metallurgical Transaction A, (2005) pp. 507-514.
[11] O.J. Lu-Steffes, R. Sakidja, J. Bero, J.H. Perepezko, Surface and Coatings Technology, 207 (2012) 614-619.
[12] J.H. Perepezko, J.M. Bero, R. Sakidja, I.G. Talmy, J. Zaykoski, Surface and Coatings Technology, 206 (2012) 3816-3822.

Synthesis of Mo-Si-B Coatings on RM Substrates

- 2 step processes:
 - Mo deposition onto substrate for < 5 minutes at 300°C using Mo(CO)₆ decomposition process

$$Mo(CO)_6 \rightarrow Mo + 6CO(g)$$

Plan view SEM image of Mo particles on Nb sample

Cross section SEM image of Mo particles on Nb sample

Synthesis of Mo-Si-B Coatings on RM Substrates

- 2 step processes:
 - 2. Co-deposition of Si+B into Mo deposit and substrate ~ 50 hours at 1000°C.
- CVD technique that uses halide vapor species to diffuse to the substrate and decompose, depositing the desired elements

Smart Coating: Benefits of TBC

- Thermal barrier coatings (TBC) are used to limit thermal exposure
 - reduce the substrate temperature of a superalloy by as much as 300°C [13]
- CTE mismatch between the TBC and underlying layers can result in failure of the coating [14]

Schematic temperature profile of a turbine blade coated with a TBC [13]

[13] N.P. Padture, M. Gell, E.H. Jordan, Science, 296 (2002) 280-284[14] W. Beele, G. Marijnissen, A. van Lieshout, Surf Coat Tech, 120 (1999) 61-67.

Extended coating system

- Mo-Si-B coatings provide robust oxidation resistance
- Thermal barrier coatings (TBC) are used to limit thermal exposure
- Research is focused on trying to create a coating that contains advantageous properties of both Mo-Si-B and TBC coatings
 - Divide research into two categories
 - Mo-Si-B coating for Nb alloys
 - Zr additions to Mo-Si-B on Mo

Performance of Mo-Si-B Coatings

- Oxidation tests show that for a given Si:B ratio, Mo-Si-B coatings offer better protection compared to Si-B coatings
- However, the cross section of the coating reveals large amounts of Nb borides that can interfere with the formation of a protective oxidation coating

Cross section of as-packed coating structure on Nb substrate

Nb-Mo-Si-B (35:1), mass change : 2.30 mg/cm² (1200°C 5 hours)

Nb-Si-B (35:1), mass change: -9.10 mg/cm² (1200°C 5 hours)

Boride Formation in Coatings

- Study by Cockeram and Rapp produced a boron modified discilicide coating on Ti alloys and also noticed significant boride formation [15]
 - proposed following reaction for the formation of TiB_2 :

 $2B + TiSi_2 → TiB_2 + 2Si$ (1) 1000°C, ΔG=-95.64 kJ/mol

- ΔG values calculated using HSC Chemistry for NbSi₂ and MoSi₂: $2B + NbSi_2 \rightarrow NbB_2 + 2Si$ (2) 1000°C, ΔG =-44.33 kJ/mol $2B + MoSi_2 \rightarrow MoB_2 + 2Si$ (3) 1000°C, ΔG =+37.50 kJ/mol
- Explains why borides are less prominent in Mo-Si-B coatings
- Boron additions in Si-B coatings all resulted in substantial boride formation

Activities of Halides

 Optimize coating structure by varying both Si:B_{source} ratio as well as B source

Plots have a Si: B_{source} ratio of 10:1

MoB

Optimize Mo-Si-B coating for Nb

- Substitution of TiB₂ in place of B in pack cementation treatment lowers the partial pressures of the boron flourides [16]
 - TiB₂ substitution in pack completely suppresses boride formation in the coating structure
- CrB₂ source shows slightly more boride formation

	$\Delta G^{\circ} (\mathrm{J/mol})$	Boron activity
SiB ₃	-4,990	0.656
CrB_2	-41,100	3.10×10^{-2}
TaB ₂	-98,100	2.51×10^{-4}
TiB_2	-149,700	3.20×10^{-6}

[16] Brian V. Cockeram, "Growth and oxidation resistance of boron-modified and germanium-doped silicide diffusion coatings formed by the halide-activated pack cementation method", *Surface and Coatings Technology*, Volumes 76–77, Part 1, November 1995, Pages 20-27

As- packed coating structure using Si:TiB₂ ratio of 1.8:1

As- packed coating structure using Si:CrB₂ ratio of 10:1

MoB substitution

- Si:MoB ratio of 10:1 used in pack cementation process at 1000°C for 25 hours
- Heat treatment at 1200°C at 25 hours in Ar flow
- TGA results show minimal mass change (0.96 mg/cm²)
- SEM of coating shows continuous glass formed on top of the sample, but boride phase is still present at the MoSi₂/NbSi₂ interface
- Suggests conditioning samples in Ar atmosphere prior to oxidation testing a preferred option for Nb samples

As- packed coating structure using Si:MoB ratio of 10:1

TGA 1200°C 24 hours

Mo-Si-B coating for Nb alloy

- Substrate: Nb-24Ti-15Si-4Cr-2Al-2Hf (at.%)
 - Two phases: Nb_{ss} (light regions) Nb_5Si_3 (dark regions)
- The samples were coated with Mo-Si-B in a two-step process. (1) molybdenum was deposited through the decomposition of Mo(CO)₆.(2) The silicon and boron/boride were deposited through a pack cementation process.
- B, CrB₂, TiB₂, MoB
- Pack condition: 1000 °C /25h

Coating structure (as-pack) for Nb alloy

- XRD of the of sample is composed of MoSi₂
- EPMA shows that the boron in the "boride region" is the (Nb,Ti)₅SiB₂ phase
 - T₂ phase of Nb-Si-B system

XRD results of as-pack sample using CrB_2 as B source

EPMA

Phase	B (at.%)	Si (at.%)	Mo (at.%)	Nb (at.%)	Ti (at.%)	Na (at.%)	Al (at.%)	O (at.%)	Hf (at.%)	Cr (at.%)	Elemental total
NbSi ₂	0	56.94	0.00	25.12	12.56	0.05	0.63	1.41	0.56	2.36	99.63
(Nb,Ti) ₅ SiB ₂	31.88	14.10	0.34	29.90	14.99	0.04	1.22	4.35	0.62	2.54	99.11
MoSi ₂	0	62.84	29.28	0.01	0.02	0.89	0.63	6.97	0.00	0.10	98.41

Oxidation: 1300°C 2 hours in air

B _{source} : Si ratio	Weight gain(mg/cm ²)
MoB:Si (1:10)	1.46
CrB ₂ :Si (1:20)	0.81, 0.82
TiB ₂ :Si (1:10)	1.03, 2.37
B:Si (1:20)	1.52

- CrB₂ B source shows the lowest mass gain
- Surface of sample is composed of borosilica and MoSi₂
- NbSi₂ converted to Nb₅Si₃ during oxidation

Oxidation in air 1300 °C /2h CrB_2 sample

Oxidation: 1300°C 24 hours in air

- Prior to TGA testing, sample was first annealed in Ar atmosphere at 1200°C for 25 hours, then oxidized in air at 1300°C for 2 hours
 - Annealing step allows for NbSi₂ to convert to Nb₅Si₃ for better coating compatibility
- TGA testing was conducted on coated Nb alloy (CrB₂ B source) at 1300°C for 24 hours
 - Mass change: -0.83 mg/cm²
 - Initial transient stage (volatilization of MoO₃) followed by steady state oxidation
 - TGA curve shows a coating that prevents catastrophic oxidation of the alloy

Phase	Crystal Structure	CTE in a direction (C ⁻¹)	CTE in c direction (if applicable) (C ⁻¹)
MoSi2	Tetragonal I4/mmm (139)	1.04E-05	
Mo5Si3	Tetragonal I4/mcm (140)	6.14x10 ⁻⁶	1.10x10 ⁻⁵
NbSi2	Hexagonal P62 22 (180)	9.81E-06	1.13E10 ⁻ 5
Nb5Si3	Tetragonal I4/mcm (140)	~9.0E-06	

- Zr additions were made first by arc melting Mo-Zr alloys (1, 2at. %Zr)
 - Apply Si-B pack cementation treatment
- Static oxidation tests and TGA testing of coated Mo-Zr alloys
 - Samples conditioned at 1500°C for 2 hours prior to testing
- Mo-1at.% Zr 1500°C 50 hours mass change: -0.047 mg/cm²
- Zr rich particles seen in cross section and plan view of silica

Element	Atom %	Atom %
Line		Frror
Ellie		LIIOI
ОК	45.94	+/- 0.43
•	.0.0	.,
Na K	0.62	+/- 0.05
ALK	0.56	+/- 0.04
C: V	22.24	1/012
SER	55.54	+/-0.15
7r	19 5/	+/-0.09
	13.34	17 0.09
Total	100.00	
10(4)	100.00	

TGA Results

Mass Change (mg/cm^2)

TGA for Mo-2at%Zr

- TGA Results of Si-B coated Mo-2atZr show reasonable oxidation
 - Zr additions do not inhibit the formation of an oxidation resistant coating
- Mass change less than those obtained from Mo-Si-B-Zr alloy [17]
 - Oxidation protection not obtained at temperatures above 1300°C

Calculated oxidation rates for MoSiB and MoSiB-1Zr alloys [13]

[17] S. Burk, B. Gorr, V. Trindade, H.-J. Christ, Oxidation of metals, 73 (2010) 163-181.

SEM: Mo-2Zr (1500°C, 24 hr)

- Mass change: 1.40 mg/cm²
- Zr-O phase seen within the substrate (~250 μm from the surface)
 - Zr additons increasing oxygen diffusion through coating

42 at.% O 58 at.% Zr

- Zr additions should be focused within the coating as opposed to the substrate
 - Could produce unwanted phases compromising the properties of the substrate
- Pack cementation treatment to infuse Zr into the Mo-Si-B coating
 - Check vapor pressures to assess feasibility
- ZrCl_x much more active compared to ZrF_x

- Si-B pack cementation applied to polished Mo coins (2mm thickness)
 - 1000°C 50 hrs
- Samples were ultrasonic cleaned and packed in Zr pack
 - 5 wt.% Zr
 - 2.5 wt.% NH₄Cl
 - Bal. Al_2O_3
 - 1000°C 10 hr
- Samples oxidized at 1500°C

- As- Packed
 - Coating composed of MoSi₂ and Mo boride (standard aspack structure)
- EDS on the surface suggest formation of Zr silicides

Zr additions to Mo-Si-B coating: oxidation (1500°C 2hr)

- Mass change: 0.25 mg/cm²
- Cross section after oxidation shows Mo-Si-B coating has converted some of the MoSi₂ into T₁ and T₂
- Surface of sample appears to be completely covered by Zr-O particles
 - EDS detects regions containing both ZrO₂ as well as Zircon (ZrSiO₄)

Elemer	nt	Atom %	
Line			
ОК		62.69	
Al K		0.37	
Si K		19.87	
Si L			
Zr L		17.07	
Zr M			
Total		100.00	

	О-К	Na-K	Al-K	Si-K	Zr-L
Base(209)_pt1	55.56	0.73	0.47	26.77	16.47
Base(209)_pt2	54.93			9.42	35.65
Base(209)_pt3	56.17			6.98	36.85

250 X

Zr additions to Mo-Si-B coating: oxidation (1500°C 10hr)

Line O K

AI K

Si K

Si L

Zr L

Zr M

Total

63.40

0.20

18.14

18.26

100.00

- 1500 C 10 hr, mass change: 1.30 mg/cm²
- XRD shows peaks corresponding to Zircon, MoSi₂ and T₁
- SEM shows a layer of Zircon formation on top of the borosilica

Future Work: Utilize plasma spray deposition

- Thermal spray process combined with Si-B pack cementation technique is an effective process to produce Mo-Si-B coatings on larger samples [18]
 - Plasma spray deposition of Mo allows for samples to be scaled up in size and complexity
- Formation of a larger coating allowing for more aggressive oxidation testing for Nb and Nb alloys

[18] P. Ritt, O. Lu-Steffes, R. Sakidja, J. H. Perepezko, W. Lenling, D. Crawmer, J. Beske. "Application of Plasma Spraying as a Precursor in the Synthesis of Oxidation Resistant Coatings." *Journal of Thermal Spray Technology.* (2013)

Future Work: Formation of Smart Coating

- Optimization of parameters for the CVD coating processes
- Integration of the smart coating into an expanded range of other TM-based alloys with emphasis on Nb-based alloys.
- Coatings with a compositional gradient decrease residual stresses [19]
 - Sharp changes in stresses may result in delamination of the coating
- Object Oriented FEA (OOF2) is public domain finite element analysis (FEA) software created by NIST to investigate the properties of microstructures
 - utilizes actual microstructure images as the basis for the finite element mesh
 - Obtain a coating structure that minimizes the residual stresses due to CTE mismatch of the coating and substrate

CTE Compatibility in Ultra-high Temperature System

In thermodynamically compatible systems, the thermal expansion of the phase mixture as a first estimate is monotonic: $CTE(A_xB_{1-x}) = xCTE(A) + (1-x)CTE(B)$

TBC Temperature (°C)	BC Temperature (°C)	Temperature Nb-Silicide (°C)
1370	1225	1090
1510	1315	1150
1650	1405	1200
1790	1490	1260

[19] X.C. Zhang, B.S. X u, H.D. Wang, Y. Jiang, Y.X. Wu, Thin Solid Films, 497 (2006) 223-231

[20] Bewlay, B. P., Jackson, M. R., Subramanian, P. R., & Zhao, J. C. (2003). A review of very-high-temperature Nb-silicide-based

composites. Metallurgical and Materials Transactions A, 34(10), 2043-2052.

Temperatures of the TBC, BC, and Nb-Silicide as Measured during the JETS Test; the BC Temperature Was Calculated Using Measurements of the Temperatures of the TBC and Nb-Silicide Substrate, Together with Thermal Conductivity Measurements [20]

OOF-2: Boundary Conditions

- Bottom
 - Y=0 (substrate)
 - X free to move (infinite plane)
- Left side
 - X=0
 - Y free to move (no constraints on top of coating)
- Right side
 - X= allow for free expansion such that $\sum \sigma_{\chi} = 0$
 - Want non-free surfaces to expand in a planar fashion
 - Run simulation first under no constraints to provide estimate of expansion taking place

OOF-2: Materials and BC

- Isotropic values
- Assume at 1000°C the coating is in a relaxed state (temperature at which coating forms).
- Boundary Conditions

$$- T_{hot} = 300$$

$$-T_{cold} = 0$$

$$- Y_{bottom} = 0$$

$$-X_{left}=0$$

$$- X_{right} = 2.23 \times 10^{-8} \text{ m}$$

T_{cold}

98.28 microns

138.35 microns

FEM mesh generated in OOF-2

	Density	Young's Modulus	Poisson	Thermal Cond	
Material	(kg/m^3)	(GPa)	Ratio	(W/mK)	CTE (C ⁻¹)
Мо	10200	324.8	0.293	138	6.50x10 ⁻⁶
MoSi2	6300	432	0.151	28.6	1.04x10 ⁻⁵
Mo5Si3 (T1)	8190	363	.268	19	8.35x10⁻ ⁶
Mo5SiB2 (T2)	8800	383	0.27	28	8.5x10 ⁻⁶
borosilicate glass	2400	64	0.19	1.1	4.00x10 ⁻⁶

OOF-2: Stesses

- Top portion of coating is in compression while bottom (substrate) is in tension
- Compressive yield stress for MoSi₂: 769 MPa
 - Suggests that coating will be intact under these conditions

-127 MPa

87 MPa

Concluding Remarks

- Mo-Si-B coating applied to Nb alloys to provide oxidation resistance
 - Can be synthesized first by applying a Mo layer via decomposition of molybdenum hexacarbonyl followed by a Si-B co-pack cementation process
 - Boride formation during pack cementation process within Nb produces undesirable coating structure, but can be optimize using different boride source
 - Enhanced oxidation protection by reducing the formation of Nb oxides in favor for a protective borosilica coating
- Coated Mo-Zr alloys show promise that the transition metal oxide can develop within the Mo-Si-B coating to provide further environmental protection.
 - Zr can be added to Mo-Si-B coating via pack cementation technique
 - Upon oxidation, oxidation resistant silica and zircon/zirconia form
 - Coating provides the necessary components for the development of a smart coating for refractory metal alloys.

Thank You!

List of papers published, conference presentations, students supported under grant FE0007377

- Publications:
 - Lu-Steffes, O. J., Sakidja, R., Bero, J. & Perepezko, J. H. Multicomponent coating for enhanced oxidation resistance of tungsten. *Surface and Coatings Technology* 207, 614-619, doi:10.1016/j.surfcoat.2012.08.011 (2012)
 - P. Ritt, O. Lu-Steffes, R. Sakidja, J. H. Perepezko, W. Lenling, D. Crawmer, J. Beske. "Application of Plasma Spraying as a Precursor in the Synthesis of Oxidation Resistant Coatings." *Journal of Thermal Spray Technology.* doi:10.1007/s11666-013-9947-2 (2013)
 - C. C. Dharmawardhana, R. Sakidja, S. Aryal, and W. Y. Ching, "Temperature dependent mechanical properties of Mo--Si--B compounds via ab initio molecular dynamics," *APL Mater.* 1, 012106 (2013), DOI:10.1063/1.4809539
- Conferences
 - Research results were presented at the 2012 Materials Science and Technology conference in the symposium "Beyond Nickel Based Superalloys-II." The title of the presentation was "Transition Metal Doped Mo-Si-B Coatings."
 - Research results were presented at the 2012 First ACEEES International Forum. The title of the presentation was "Design and Synthesis of Zr Doped Mo-Si-B Coatings"
 - Research results were presented at the 2013 Materials Science and Technology conference in the symposium "High Temperature Corrosion and Oxidation of Materials." The title of the presentation is "Mo-Si-B Coatings on Niobium Base Systems for Enhanced Oxidation Protection"
 - Research results were presented at the 2013 Second ACEEES International Forum. The title of the presentation was "Enhanced Oxidation Protection for Niobium Base Alloys Utilizing a Mo-Si-B Coating"
 - Research Accomplishments from this project were presented at the 2012 University Coal Research/Historically Black Colleges and Universities and Other Minority Institutions Contractors Review that took place on May 31, 2012.
 - Research Accomplishments from this project were presented at the 2013 University Coal Research/Historically Black Colleges and Universities and Other Minority Institutions Contractors Review that took place on June 11-13, 2013.
- Support
 - John Perepezko; PI
 - Otto Lu-Steffes; graduate student
 - Dana Jackson; undergraduate laboratory assistant