

Annual Report DoE Grant No: DE-FE0003859

Metal oxide sensing materials integrated with hightemperature optical sensor platforms for real-time fossil fuel gas composition analysis

Kevin P. Chen PI

Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261 Email: pec9@pitt.edu, Tel. 724-6128935

May 20, 2014

Program Overview

- University Coal Research Program
- Starting September 2010
- Two Key Components:
 - Development of High-Temperature Sensor Platforms
 - Integration of Functional Metal Oxide Nano-Materials for Gas Sensing
- Two fiber sensor platform techniques
- Twelve journal publications
- One pending patent
- Two industrial collaborations

Research Overview

- Low-cost point fiber sensor for high-T
 - High performance high-T fiber Bragg grating point sensor (1200°C) at \$20/sensor
 - Active fiber sensor rated for 1000°C
 - Single-mode fiber laser sensors rated at 750°C

• **Distributed** fiber chemical sensors

- First-ever demonstration of distributed fiber chemical sensing
- Rayleigh-scattering OFDR technique
- 1-cm spatial resolution
- Integration with Pd/PdH for H₂ sensing
- Functional Metal Oxide Nanomaterials
 - Engineering porosity to control refractive index for on-fiber integration
 - Integration with high-T fiber sensors
 - Real-time characterization of refractive index change/Optical loss
 - NH₃ measurements

Topic I: Fiber Point Sensor for high-T

- Current State of the Art
 - F-P interferometer on the sapphire fiber tip
 - Fiber Bragg grating in single-mode fiber by the ultrafast laser fabrication
- Challenge
 - Packaging is key (Expensive and difficult)
 - Multi-mode fiber (No cladding)
 - Poor spectral performance
 - Expensive

F-P Sensor

Dr. Wang's group at VT

Type II FBG		
fiber core	fiber core Ω → 3.2 μm	± fiber
Type I IR 125 fs grating	Type II IR 125 fs grating	Type II IR 1.6 ps grating
CR	C Canada	1

- Turn a \$20 dollar commercially off-shelf fiber Bragg grating into a high-temperature sensors beyond 1000°C.
- Extended the chemical regenerative fabrication process
 - Air-hole microstructural fibers (Multi-functional sensors)
 - Rare-earth doped active fibers (fiber laser sensors)
 - High attenuation fibers (active sensors).
- Expand capability of fiber sensor beyond only temperature or strain measurements.
 - Specialized ultrafast laser fabrication equipment <u>no longer needed!</u>
 - Cost of high-T sensors comes down drastically!
 - Applicable to wide varieties of fibers

FBG Sensor in Silica Fibers Rated at 1200°C

- Air-hole fibers.
- D-shape fibers.
- Er-doped active fibers for lasers
- High-attenuation fibers for active sensing

Chemical Regenerative Process

- A Strong Type I FBG in optical fibers fabricated by UV laser.
- Rapid thermal annealing to anneal UV-induced defect.
 - Customer rapid heating furnace development
 - Control software to optimize the process
- Stress induced on the fiber core-cladding interface during defect erasure.

Miniaturized Furnace

Control Software

Sample Run

Specialty Fiber: High-Attenuation Fiber

- Co-doped core to absorb guided laser light.
- Attenuation 0.1-1 dB/cm
- In-fiber light to control FBG temperatures
- Application: multiplexible flow sensors

Fiber Optical Flow Sensors

- Principle: optical hotwire anemometry
- Reliable in-fiber heating at >1000°C
- Reliable temperature sensors rated at at >1000°C
- All in ONE fiber

Optical Heating and T Measurements

Previous record for flow sensor: 650°C (ORNL) http://www.ornl.gov/sci/ees/mssed/sst/factsheets/HighTemperatureGas.pdf

Our record: 850°C

Application II: Fiber Laser Operated at 750°C

Active Fiber Laser Sensors for Energy

High Temperature Fiber Laser Sensors

- The most sensitive vibration sensors.
- DFB and DBR fiber lasers
 - Vibration measurements
 - Ultrasonic measurements
 - Turbulence flow measurements
 - Partial discharge measurements
- >10,000 higher sensitivity than passive FBG sensors
- Ultra-high measurement resolution
- Multiplexible
- However, operational temperature of current DFB/DBR fiber lasers < 200°C

Miller, Gary A., Geoffrey A. Cranch, and Clay K. Kirkendall. "High-Performance Sensing Using Fiber Lasers." *Optics and Photonics News* 23.2 (2012): 30-36.

DBR Fiber Lasers with Record-High Operation Temperatures (750°C

High-T FBG in Er-doped Fibers

Two matched Type I FBGs in Er-doped fiber. High-quality is key! (low loss for lasing)

FBG regenerated at 800°C

DBR Fiber Lasers with Record-High Operation Temperatures (750°C)

11

- Current State of the Art
 - Brillouin Scattering OTDR
 - Sub-meter resolution
 - Limited to Temperature and Strain measurement (0.1C and 1 $\mu\epsilon$)
 - Long distance (up to km)
 - Rayleigh Scattering OFDR
 - mm- resolution
 - Limited to Temperature and Strain measurement (0.1C and 1 $\mu\epsilon$)
 - ~100 meter distance

Schematic illustration of Brillouin scattering and (b) Rayleigh scattering.

- Expand Rayleigh scattering distributed sensing beyond T and Strain measurements
 - Active fiber sensing scheme for environmental adaptability.
 - Air-hole microstructural fiber for multi-parameter measurements
 - Functional coating on-fiber for chemical sensing with –cm resolution

Rayleigh Scattering and OFDR

Rayleigh Scattering

$$\alpha(z)_{Rayleigh} = \frac{8\pi}{3\lambda^4} [n(z)^8 p^2] (kT_f)\beta$$

OFDR Scheme

Fig. 3: Schematic sketch illustration of the OFDR operation principle [20].

 ✓ Optical Frequency Domain Reflectometry (Swept-Wavelength Interferometry) for Sub-mm spatial resolution over tens of meters

- ✓ In-fiber Rayleigh scattering highly sensitive to local perturbation
- ✓ All-temperature operation
- ✓ Further Functionality improvement possible
- Cost, Response Time, Cross Talk

OFDR Measurement Results Two-Hole Fibers: 2000 psi

Fiber Length (mm)

OFDR Measurement Results 800°C

17

Distributed Hydrogen Sensing

Sputtering Coating of Pd on fiber

Chemical Sensing: H2 sensing Case using FBG

Distributed Chemical Sensing

Heating of on-fiber Pd Coating to Speed up sensor performance

Distributed Sensor Response (10% hydrogen)

Progress Update: Distributed Sensing

- Distributed Fiber Sensing Beyond T and Strain Measurements
 - Demonstration of distributed pressure sensing
 - Demonstration of distributed chemical sensing
 - Spatial resolution of 1-cm achieved
 - High temperature capability demonstrated at 800C
 - Demonstration of distributed flow sensing
 - Working on Chemical sensing (pH sensing).
 - >1000C operation possible (depends on fiber)
- Further development
 - Improve distributed chemical/pressure/flow measurement distance > 1 km at high T
 - Enhance sensitivity and response time
 - Expand distributed measurement species

- Nano-Engineering on Refractive Index of Metal Oxide SnO₂
 Reduce index from n=2.2 to n=1.4 for on-fiber integration
- Develop high-T FBG sensor in D-shaped Fibers
- Integration of nano-engineered SnO₂ with FBG on D-shaped Fibers to characterize NH₃-induced optical properties change
- Simultaneous determination of refractive index change and absorption of metal-oxide FBG sensor induced by NH_3 exposure from 20°C to 600°C

Importance of Refractive Index Control

Sensor Characterization in NH₃

FBG Peak Shifts (RT to 500°C)

Absorption (RT to 500°C)

- Strong evidence support
 - NH₃ reaction with metal oxide does NOT induce refractive index change
 - NH₃ reaction with metal oxide DOES induce strong absorption
- Implication for sensing application
 - Metal-oxide fiber sensor based on measuring stimuli-induced index change <u>MIGHT NOT</u> Work
 - Evanescence-field fiber absorption sensors can be very sensitive!
 - Nano-engineering to reduce refractive index of metal oxide critical!!!
 - High-quality (i.e. high uniformity) metal-oxide MIGHT NOT WORK
 - Sol-gel approach might be better than other coating techniques such as sputtering
- Current works
 - Explore different oxides $(SnO_2, TiO_2, VO_2, etc)$
 - Sensitization of oxide by doping to improve sensitivity and selectivity
 - More sensitive fiber sensing scheme

- Success in high-T point sensor development
 - Greatly reduce the cost of high-T FBG sensors in a wide varieties of fibers
 - Operation T ~ 1200C
 - Optical flow sensor rated for 1000°C
 - DFB fiber laser sensor for 750C operation.
- **Extraordinary** success in distributed sensor development
 - First ever demonstration of distributed chemical sensor
 - First ever demonstration of distributed flow sensor
 - First ever demonstration of distributed pressure sensor for <u>high temperature</u>
 - (Future development for >10 km distributed measurement)
- Metal oxide nano-materials integrations
 - Success in metal oxide porosity and index refraction control
 - Complete metal oxide fiber integration
 - Real-time gas sensing demonstrated