Addressing Model Integration Challenges in Energy Systems

Dr. Mark Bryden Dr. Kris Bryden

Simulation, Modeling, & Decision Science

Increasing energy use Increasing impact on the environment Increasing resource scarcity

Energy and environmental challenges

Why create models?

What's needed

Information

- 1. Integration
- 2. Mediation
- 3. Interaction

Actionable information

What's needed

Information

- 1. Integration
- 2. Mediation
- 3. Interaction

Actionable information

Computers will gather of information and format it for decision makers ...

1958 - Leavitt and Whisler

design workbenches, modeling playgrounds, problem solving environments, design sandboxes, integrated computational environments

Unified design environments

Decision making environments that integrate all the information, models, and other artifacts related to a product or process.

"What if" environments

Analytics tools

Visualization

VE-Suite

Models ' & Data

Design tools

- Massive data sets
- Any data source
- Any visualization platform
- Any compute platform
- osgBullet/osgWorks/latticeFX

Actual Item

3D Model

Savings per project

- 40% cost reduction
- development time cut in half

- Paint trainer developed to reduce the cost, time, and waste associated with painting.
- ~50% reduction in cost
- Improved product performance
- VE-Suite "under-the-hood"

- cover crops
- variable rate residue removal
- Integrated cropping systems
- Landscape management

Sustainable residue on a subfield scale

Corn

Sustainable residue on a national scale

Computers will gather of information and format it for decision makers ...

Old decision making paradigm

New decision making paradigm

"... a centralized model encompassing a set of other models"

- integration framework
- global ontology and semantics

Integrated modeling

"... a centralized model encompassing a set of other models"

- integration framework
- global ontology and semantics

Pre-determined meta model

Integrated modeling

Model portability

To provide

- high degree of independence for component models;
- a common, light-weight mechanism for model linkage; and
- a basis for deploying the federated model set.

Goal of developing a new architecture

Constituency

the capability of models to come together in groups that have coherence and substitutability

Articulation

a simple and precise mechanism for describing how the models are chosen, linked, executed, and results reported

Convergence

a knowledge of the topological mapping of the federation and the capability to route and converge information through the federation to complete the assigned tasks

Federated model set requirements

Components and information flow

Structure of a component model

- "Accurately" simulate/model the virtual world
- Interactive decision tools
- Realtime player communication and decision making
- Easily understood graphical interface

Mark Bryden 515-294-3891 kmbryden@iastate.edu

Simulation, Modeling, & Decision Science