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IV. System Structure Representation 

Simplest representation of system structure given information measure is graph 
and/or adjacency matrix where the weight between each node (sensor)  is mutual 
information. 

 

 

 

 

 

 

 

Extension on this topic is our project [9] which focus the method for discovering and 
constructing sensor network using mutual information.  

I. Introduction 
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Power plants are composed of many subsystems 
and components. These subsystems possess 
their own individual dynamics, and contributing to 
overall system dynamics through their 
interactions. Sensors are used to partially monitor 
plant to detect and track anomalous behaviors. 
While sensor data from directly connected 
elements are related, it is also possible that other 
elements may be related via the intrinsic dynamics 
of the overall system.  

•  Correlation measures can perform poorly for 
nonlinear correlation. 

•  Correlation measures are insufficient to 
capture nonlinear underlying dynamics of 
power  plants  

•  We propose mutual information to capture 
this nonlinear interconnection. 

II. Relationship  between Information Measures and  
Power Plant Equipment Monitoring: A Control Theory Perspective 

Mathematical Model of Power Plant:  
 

   

 
 

§  Mutual information between inputs and outputs are directly related to system structure,  
§  With appropriate sensing, plant condition will be reflected in the sensor data.  

Linear System: 
    

 

 

 

§  Mutual information between input and output is an explicit function of input and  controllable/ 
observable structure (A,B,C),  

§  Changes in structure of linear systems can be detected by examining mutual information,  
§  We hypothesize that this result holds for nonlinear systems as well [1,2]. 
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•  From information theory perspective, inputs and 
outputs for any subsystem are analogous to a 
transmitted message and the corresponding 
message received, respectively, 

•  The system and the observer play roles analogous 
to that of the communication channel and a 
decoder, 

•  Based upon this correspondence, we investigate 
an information-theoretic framework for capturing 
system structure and its evolution. 

III. Computation of Mutual Information 

A key challenge is the computation of mutual information as existing algorithms require strict assumptions  [3,4,5,6] and violation of these assumptions can lead 
to ambiguous interpretation.  

 

 

 

 

 

 

A) Continuous-Valued Representation 

•  Underlying dynamic of complex plant are continuous, 
•  Sensor data generally treated as continuous-valued, 
•  Use Hidden Markov Models (HMMs) to capture coarse approximation of 

underlying dynamics, 
•  Data under HMM with Gaussian emission is Gaussian Mixture (GM) => 

approximate large class of probability distributions.  
•  Model construction performed in two steps;  

o  Model order selection and parameterization for given data, 
o  Computation of mutual information given HMM. 

•  Interpretation of information measure for continuous RVs can differ from 
original definition in discrete-valued space. 

A.1) Hidden Markov Model Construction 

 

 

 

 

 

 

A.2) Mutual Information Computation for Data Generated by HMM 

 

 

 

 

 

 

 

 

A.3) Results from Simulations and Complication 

 

B) Discrete-Valued Representation 

• Results from computational algorithms upon violation of strict assumptions, 
can have completely different interpretation,  
• Mathematically proven that Shannon mutual information give meaningful 
result even if i.i.d. assumption is not satisfied, 
• We focus on this simplest method for mutual information computation. 

B.1) Shannon Mutual Information and Quantization 

• Discrete-valued representation requires quantization, 
• Selecting methods for quantization can be challenging, 
• Simulations show that computation of mutual information is not overly 
sensitive to quantization method, 
• Simulations also suggest that normalized mutual information can be used to 
reduce the effect of different number of bins.. 

 

 

 

 

 

 

 

 

 

B.2) Simulation Results on Varying Parameter Dynamical Systems 

• Normalized mutual information is computed for blocks of size 8,000 data on 
two non-stationary coupled chaos systems .  
• The average from 50 consecutive windows are used as an estimation.  
• We computed               ,                 and                 where                   and 

 

 

 

 

 

 

§ Shannon mutual information is applicable for non-stationary and complex 
dynamics to certain degree.  
§ This method works well for coupled Hénon maps while some complication 
exists for more complicated systems (coupled Lorenz systems).  
§ We strongly believe that this computation will be able to detect 
malfunction in the power plant . 

1.  Parameters of HMM can be computed by  
Baum-Welch method given model order.  

2.  Robust implementation (Mann [8]) applied 
to counter underflow issues associated with 
long training data sequences.  

3.  Iterative method used to determine model 
order. 

 

•                                                      , 
where each term in the sum on the 
right-hand side is a GM,  

•  We compute the entropy of GM 
using improvement for upper and 
lower bounds estimation  based on 
[7]. 
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V. Conclusions and Future Work 

•  Theoretically, information measure can be used to detect the change in the 
structural of the systems,  

•  We propose, study and compare the computation approach for mutual 
information, 

•  Simulation results show that Shannon mutual information can detect the change 
in the parameter of coupling chaos systems,  

•  We propose the use of adjacency matrix for health condition monitoring  
 
q  Due the symmetric property, mutual information cannot be used to detect the 

direction of influence.  
q  We are currently investigate the new alternative quantity which emerges from 

mutual information in order to detect the directionality.  
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§  Computationally expensive, 
§  Degenerate solution lead to use 

low order model, 
§  Gaps between the upper and 

lower bounds of mutual 
information are large,  

§  These three problems need 
to be solved for feasibility of 
this approach. 


