MVA demonstration activities at an EOR site with surface geodetic and geochemical techniques

Tim Dixon University of South Florida, Tampa

Peter Swart University of Miami

- Surface monitoring techniques are a potential low cost approach to MVA (Monitoring, Verification and Accounting)
- We have tested 4 techniques at an EOR site in south Texas:
 - Passive seismic
 - Geochemical (soil gas)
 - InSAR
 - GPS

Geochemistry

- Examining changes in soil gas composition over a CO₂ reservoir may reveal if gas is leaking to the surface.
- CO₂ concentrations vary naturally due to soil biological activity, and with anthropogenic activity; Isotopic studies using δ¹³C can help reveal the source of CO₂.

 While Mass Spectrometry has advanced since the 1940's, it still requires cryogens and careful attention for accurate isotopic measurements

 The Cavity Ringdown Spectrometer, an optical instrument, is suitable for field operations

Diurnal variation – plant and soil microbial activity Weekely variation - anthropogenic

Operational Concept

- Surface geochemistry system using 1 CRDS system (concentrations PLUS isotopic data) provides leak monitoring for ~ 1 km square
- Relatively low cost:
 ~100K plus analysis/maintenance

Surface Deformation - Background

- Surface deformation (measured by GPS or InSAR) is sensitive to pressure changes in the reservoir at depth
- Can be used to monitor plume location/ migration IF pressure changes are sufficiently large
- Challenge separating signal from a variety of noise sources

Deformation sources in the Gulf Coast (partial list)

Signal \rightarrow

- CO2 or saline water injection, oil extraction at the site of interest
 - Regional ground water table variation associated with wet/dry season
 - Local ground water variation due to pumping
 - Extraction of oil, natural gas from adjacent fields
 - Salt tectonics

Noise

Comparison of GPS and GRACE satellite time series Indicator of regional groundwater loading

Study Site: Hastings, Texas

Reservoir Pressure History

InSAR: 2012-2013

GPS Noise Reduction Approach

- Use nearby GPS stations as reference to define and subtract common mode (regional) signal
- Problem: some nearby stations also respond to local deformation sources (eg groundwater pumping)
- Solution: correlation analysis distinguishes local vs. regional signals
- Use stations whose signals correlate with many other stations

Simple elastic half space, "penny-shaped crack"

horizontal circular crack

Model vs Data (map view)

GPS data on plume extent consistent with block integrity (sealing fault) during initial injection phase

Predicted Total Uplift (Year 1)

Predicted Reservoir Pressure from GPS Data

Conclusions

- Surface deformation can make useful contributions to MVA; low cost augmentation to downhole techniques
- High precision GPS provides information complimentary to InSAR (vector data, high time resolution, less sensitive to vegetation/water vapor effects)
- Caveats:
 - Annual hydrologic signal can be large; one-two yrs of baseline data is useful
 - Should be integrated with geomechanical information

Acknowledgements

- Supported by DOE
- Technical support from Texas Bureau of Economic Geology
- Site access and ancillary data from Denbury Resources

Questions?

