# Well and Seal Integrity

#### Bill Carey, Hiroko Mori, Diana Brown and Rajesh Pawar Earth and Environmental Sciences Division Los Alamos, NM

August 12-14, 2014 • Carbon Storage R&D Project Review Meeting • Pittsburgh, Pennsylvania



Session: Wellbore Integrity, Brighton 3 & 4



# **Experimental Studies**

- Materials
  - Caprock:
    - +Shale and anhydrite caprock
  - Wells

**Environmental Sciences** 

- Type G oilwell cement and wellbore composites (Shale-Cement-Steel)
- Permeability of damaged materials
- Plastic behavior of shale, cement and anhydrite
- Pure shear configuration







#### Triaxial Coreholder: Self-supported triaxial stress with permeability measurement



#### In Situ X-ray or Neutron Tomography with triaxial coreflood



Triaxial Coreflood: Confining pressure Axial load Multiphase fluid injection



Portable for use in different facilities Max operating conditions: 100 °C,

350 bar confining/pore, 4,800 bar axial load Samples: 1x3" Strain measurement Piston displacement Acoustic velocity Fluid pressure Temperature Fluid samples



#### **Fractured Cement with Supercritical CO<sub>2</sub>**

- Type G oilwell cement with cement/water ratio of 0.4
- Experiment at 45 °C and 1700 psi (117 bars)
- Multi-stage
  - Elastic measurements of intact cement (room temperature without confining pressure)
  - Fracture cement in pure shear
  - Measure permeability to water
  - Measure relative permeability of mixed watersupercritical CO<sub>2</sub> flow
  - Measure permeability to water
  - Repeat over the course of 7 days
    - + Sample "rests" at ambient condition overnight
- X-ray tomography



#### **Elastic Properties of Cement**



#### **Stress-Strain Curves**



## **Fracturing Cement in Pure Shear**



nos

## **Fracture-Permeability in Cement**



#### **Strain-Stress-Permeability in Cement**



## X-ray Tomography



Earth & **Environmental Sciences** 

#### X-ray tomography



# Water permeability as function of time



5

#### **Relative permeability as a function of time**



### **Pure Shear Results**

- Cement fractures in shear at 8000 psi (550 bars)
- Fracture occurs at 1% shortening
- Supercritical CO<sub>2</sub> dissolves cement and creates clear reaction patterns in x-ray CT
- Permeability initially 15 mD decreases to 7 mD over 7 days (17 hours CO<sub>2</sub> exposure)
- Relative permeability of water = 0.31
- Relative permeability of CO<sub>2</sub> = 0.04



### Conclusions

nvironmental Sciences

- Extensive strain required to generate connected fractures
  - May limit consequences in actual field conditions
- Flow through damaged cement equivalent to 7 mD but relative permeability creates further limits to flow
- Supercritical CO<sub>2</sub> does not increase permeability of damaged cement (also see Carey et al. 2010; Walsh et al. 2013; Carey and Newell 2013; Huerta et al. 2013)
- Future work will measure fracture apertures and connectivity under in situ conditions

We are grateful to DOE-Fossil Energy (FWP FE-10-001) for their support