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Program Goal No. 4

= “Develop Best Practice Manuals for monitoring, verification, accounting, and
assessment; site screening, selection and initial characterization; public outreach;
well management activities; and risk analysis and simulation.”

Benefit Statement

= An understanding of hydromechanical interactions is essential for effective
monitoring and prediction of reservoir performance. This is especially true for
storage systems expected to experience higher overpressure.

= This project has developed new analysis methodologies for:

o probabilistic assessment of fault reactivation potential and in situ stress
sensifivity

o dynamic well-test analyses using mulfi-rate gauge data
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Structural diagram of Hammerfest Basin at Middle Jurassic level (approx. age of
producing reservoir). Blue lines outline the gas fields [from Spencer et al., 2008].



Snghvit

Depth map at top of Fuglen Fm. (below) and stratigraphic section (right)
[from Wennberg et al., 2008]

* Producing natural gas with 5-8% CO, content,
which needs to be reduced before liquefication.

« Separated CO, was originally re-injected info
Tubd&en Fm. at approx. 2400-2600m depth.

* Injection began in 2008, but in 2010 Staftoil
announced storage capacity in Tub&den was lower
than expected. Operators recompleted well and
have continued injection in the shallower Stz
formation.
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Focus areas where modeling can help monitoring and
project management:

(1 Decision-based Modeling

o Using modeling to inform instrument design and deployment schemes

@ Data Integration and Data Assimilation
o Merge diverse monitoring data sets info unified interpretations

o Deterministic or stochastic inversion of monitoring data

3 Uncertainty Quantification and Risk Assessment

o Quantify how uncertainty impacts performance and risk



Snaghvit Case Study |
Using modeling to address uncertainty in stress measurements
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A key project concern was whether excess fluid pressure
could reactivate faults and create leakage paths
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Figure: Model prediction of excess pressure (MPa) necessary to initiate fault slip with the base case
scenario parameters, which corresponds to a SS/NF environment with N-S S, direction.




Sensitivity analyses reveal that critical uncertainty is
SHmax orientation, but overall leakage risk is low

| MmFault 15
™ Fault 14
M Fault 13
M Fault 12
W Fault 11
M Fault 10

Fault 09

Sobol sensitivity index

Figure: SHmax azimuth dominates critical pressure sensitivity

= Suggests highest-value target for future characterization efforts



Snahvit Case Study 2
Welltest analysis and continuous inversion of gauge data
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Pressure response indicative of a partially compartmentalized
system
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Well tests commonly used to look for flow barriers and
other indications of reservoir structure

t; : the fault is not reached, radial flow
t, . the fault is reached

15 : the fault is seen at the well, transition

t4 - hemi-radial flow
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[Figure from Bourdet, 2002]



Falloff analysis showed clear indications of flow barriers

« Results suggested flow barriers at 110, 110, and 3000m
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Figure: Falloff analyses using permanent gauge (2009) and PLT data (2011).
(Hansen et al. 2012)



Falloff testing has proven value, but requires shutting in

the well for significant periods
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* Motivating question: Can we derive similar information from ongoing

injection data, without shutting in for long periods?




Generdlized superposition well-test method

single rate injection multi-rate injection

* Multi-rate injections are
difficult to analyze.

* (Can use superposition
principle to transform a

multi-rate injection into an K
“equivalent” single-rate

test. time

pressure
pressure

* Solve for a characteristic 2 3
buildup curve, as a
constrained least-squares _ .
time time

problem.

Single rate:  p(t)=q" p-(t)

Multi-rate: p(t) = 2(%*1 - q,-) "Pce (t - ti)



Automatic calibration to Snghvit data (~5 seconds)

measurement forecast / precast — calibration period =3
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Superposition tool can potentially be used in two modes:

(1) Reservoir characterization mode
o Calibrate to gauge data, extract equivalent falloff test

o Apply standard well-test analysis tfechniques to results

2 Pressure forecasting mode
o Calibrate to gauge data, project forward in time

o Quickly explore alternative injection scenarios



Fast-running pressure forecasting

pressure, bar
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Fast-running pressure forecasting

pressure, bar

400

380

360

340

320

300

measurement —

forecast / precast —

calibration period =3

equivalent buildup test

150 :
100 | -]

50 |- 1

0 | |

0 500 1000

0 1IOO 2|OO 3|OO 400 560 6IOO 760 860 9|00 1OIOO

time, days

1100



Fast-running pressure forecasting

measurement forecast / precast — calibration period =3
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Fast-running pressure forecasting

measurement forecast / precast — calibration period =3
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Fast-running pressure forecasting
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Fast-running pressure forecasting
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Retrospective analysis of a brine pre-production scenario
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Summary

(D This project has explored two useful analysis techniques:

o Probabilistic assessment of fault reactivation potential and in situ stress
sensitivity

o dynamic well-test analyses using multi-rate gauge data

@) Directions for future work:
o Full poromechanical simulations of fault reactivation and leakage.

o Relaxing current assumptions in the welltest analysis methodology
to provide a more general tool.
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Gantt Chart

Task FY2012 FY2013 FY2014
4.1  Pre-study (complete)
4.2  Site characterization & geomodel L 2
4.3  Flow and transport modeling ® o
4.4 Geomechanical modeling
Forecasting fault failure L 4
Caprock deformation & fracture L 2 L 2

= All technical tasks have been completed.

= |n the final reporting stage:

o  Will submit final report and lessons-learned document by Sept 30,
2014.

o Several journal manuscripts currently in review or preparation.
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