

Woodside¹, Richards¹, Ochs¹, Huckaby¹, Oryshchyn¹, Kolczynski¹, Felman^{1,2}, Kim¹, Weiland¹, Bedick^{1,4}, Haworth³, Dasgupta³, Cann², Singh³, Nielsen¹, McGregor^{1,2}, Gibson², Bokil², Celik⁴, Escobar⁴, Lineberry⁵

Generating a knowledge base, data sets, and tools toward predicting and improving MHD power generation technology performance

Magnetohydrodynamic Energy Conversion R&D

CFD simulation of combustion and ionization

Open-Foam models for (undiluted) oxycoal combustion are being developed.

Ionization and ion transport models compared to lab measures (below)

Measurement of electrical conductivity in seeded oxy-fuel flames

Conductivity measurements used to validate predictions: -Literature cross sections lead to >2x uncertainty in conductivity. -Oxy-fuel operation has high CO2 concentration versus earlier studies. -Double Langmuir probe (transient) in 25mm oxy-fuel flame. -Planar laser induced fluorescence used to characterize flame profile

Ceramic Electrode Processing and Characterization Baseline "Hot" Electrodes: La_{0.95}Mg_{0.05}CrO₃ $88\% \text{ ZrO}_2 - 12\% \text{ Y}_2\text{O}_3$ alysis showed single $89\% \text{ ZrO}_2 - 10\% \text{ Sc}_2\text{O}_3 - 1\% \text{ Y}_2\text{O}_3$ luorite for ZrO₂ and 82% HfO₂ – 10% CeO₂ – 8% Y₂O₃ HfO_2 powders (above), and single phase perovskite for $La_{0.95}Mg_{0.05}CrO_3$ 5) 83% HfO₂ – 17% In_2O_3 above)

1000 900 --- AC resistivity --- DC resistivi 0.8 0.9 1 1.1 1.2 1.3 1. 1000/T (K⁻¹)

 $(La_{0.95}Mg_{0.05}CrO_3 showr$ Electrical measurements on 82HfO₂-10CeO₂-8Y₂O₃ revealed an electrical conductivity (σ) of **0.016** S/cm at 900°C.

U.S. DEPARTMENT OF NERGY