

Magnetocaloric Oxygen Liquefaction System (MOLS) for High **Efficiency Air Separation**

April 10, 2019 Jamie Holladay

PNNL is operated by Battelle for the U.S. Department of Energy

FWP-73143

Project Description and Objectives:

MOLS project summary

- Overall Program Objectives:
 - Air separation unit (ASU) program's overall objective is to develop an efficient oxygen generator for 1-5 MWe small-scale modular power plant to increase power plant efficiency
- PNNL's Objective: 1yr project
 - Feasibility study to determine if modular, innovative magnetocaloric liquefaction (MCL) technology is suitable by liquefying ~1 kg/day of air
 - Projected increase in the air liquefaction portion of ASU's Figure of Merit (FOM) by 60+%
 - Techno-economic analysis (TEA) to show economically viable at small scale (10 tonne/day)
- Time: December 1, 2018 to November 30, 2019
 - Option years from December 2019 to November 2022
- Budget: \$1,000,000
- End of first year deliverable: liquefaction of ~1 kg air/day and TEA

Project Objectives:

MOLS enables efficient, small-scale (10 tonne/day) air liquefaction

- Current cryogenic gas liquefaction uses turbo-**Brayton cycles**
 - Use gas refrigerants which must be compressed, cooled, and expanded
 - Air liquefaction is the biggest energy consumption of the ASU
 - Difficult to scale down to 10 tonne/day
- Magnetocaloric refrigeration
 - Modular and scalable to <10 tonne/day
 - Solid state refrigerants
 - Minimal gas compression and no expansion

Figure from Jones et al, Fuel Processing Tech 92 (2011) 1685

Active Magnetic Regenerative Refrigeration uses the magnetocaloric effect for efficient cooling

Dual Active Magnetocaloric Regenerator System

https://www.caloricool.org/area/magnetocaloric-effect.

Background:

Schematic of active magnetic regenerator; See R. Teyber,; J.D. Holladay, et. al. 2019 Applied Energy to be published in Feb.

Background:

PNNL's has been working on magnetocaloric cryogenic cooling since 2015

Superconducting magnet

PNNL uses patent pending engineering designs for modular and (potentially) highly efficient operation

Active Magnetic Regenerator = AMR

We take advantage of the unique characteristic of 2nd order ferromagnetic materials for high performance

Data measured by AMES in FY17

Our liquefier exploits heat transfer fluid bypass to take advantage of the difference in thermal mass

 Bypass enables continuous cooling which decreases the temperature approach in the process heat exchanger thus increasing the efficiency

Pacific

Northwest

Active Magnetic Regenerator = AMR

A phased approach will be used for the air liquefier development to minimize risk

Phase 1: Feasibility Study: Use PNNL's MCL technology for air liquefaction and perform techno-economic analysis to determine the economic and technical viability

Activity ID	Activity Name	Start	Finish							
				Dec	Jan	Feb	Mar	Apr	May	Jun
MOLS for High Eff	iciency Separation	12/1/18	11/30/19							
Feasibility Study		12/1/18	11/30/19							
Task 1.0 - Pr	oject Management and Planning	12/1/18	11/30/19				M9			
Task 2.0 - De	sign a liquefier that produces 1.0 kg of air/day	12/1/18	2/28/19			٠	M4			
Tack 3.0 Su	inthesize MCL magnetic refrigerants and build regenerators	12/10/18	8/15/19				M3			
145K 0.0 - Sy	nulesize mol magnetic remgerants and build regenerators									
Task 4.0 - Mo	odify existing test apparatus for a liquefier using new regenerators	2/1/19	5/31/19) M4
Task 5.0 - De	monstrate new MCL liquefier at target liquefaction rate	9/1/19	10/15/19							
Task 6.0 - Ar	10/1/19	11/15/19								
Task 7.0 - Re	fine techno-economic analysis to feed Go/No-Go decision	10/1/19	11/30/19							

Multiple refrigerants are required to efficiently achieve a large temperature span and bypass

- Cooling power is proportional to adiabatic temperature change
- As move away from Curie Temperature

Progress:

- The adiabatic temperature change decreases
- Difference in thermal mass decreases so bypass is reduced
- To maximize cooling power over a wide temperature span multiple materials are required

- Solid lines show field change from 6 to 0.2T
- Dashed lines internal field change from 3.1 to 0.2 T

Multiple refrigerants are required to efficiently achieve a large temperature span and bypass

- Cooling power is proportional to adiabatic temperature change
- As move away from Curie Temperature

Progress:

- The adiabatic temperature change decreases
- Difference in thermal mass decreases so bypass is reduced
- To maximize cooling power over a wide temperature span multiple materials are required

- Solid lines show field change from 6 to 0.2T
- Dashed lines internal field change from 3.1 to 0.2 T

Magnetic materials with large ΔT vs. T for 6-layer dual regenerators selected for MOLS prototype

Layer Number	Magnetic Material Molar Composition	Curie Temperature (K)	Ave Thot Temperature
1	Gd	293	280
2	Gd _{0.75} Dy _{0.25}	263	250
3	Gd _{0.49} Dy _{0.51}	233	220
4	Gd _{0.24} Dy _{0.76}	203	190
5	Gd _{0.27} Ho _{0.73}	173	160
6	$Gd_{0.74}Er_{0.26}Al_2$	143	130

Design options: multi-stage regenerators or multi-layer regenerator

Multi-stage regenerators

Progress:

Multi-layered regenerator

Design options: multi-stage regenerators or multi-layer regenerator

Multi-stage regenerators

Progress:

- 1-2 materials per regenerator
- Advantages
 - Easy startup
 - Easy control
 - Simple design
- Disadvantages
 - Increased capital cost
 - Inter-stage heat exchangers are required

Multi-layer regenerator

- Materials in layers
- Advantages
 - Reduced capital cost
 - Eliminates interstage heat exchangers
- Disadvantages
 - Requires diversion flow

Control valve design

Pacific

Northwest

Northwest

Operation with controlled diversion flow; first layer (Gd) has heat transfer fluid flow; other layers do not

1 6

GEN-IIC achieved ~165 K even with large parasitic heat leaks

Length/diameter aspect ratio impacts available cooling power

• Small aspect ratios increase longitudinal conduction loads

Progress:

- Reduces available cooling power/layer of refrigerants
- GEN-I (single-layer) prototypes had 1:1 aspect ratios within original s/c magnet dimensions
- GEN-II (multi-layer) required smaller aspect ratios to fit multiple layers into s/c magnet
- All GEN-II results are fully explainable once longitudinal conduction is subtracted from refrigerants gross cooling power
- Developed new equations to take aspect ratio (background section) into account and updated models
- Future designs: Aspect ratios > 0.6-0.7 + <u>longer magnets</u>!

First time identified the aspect ratio affects on available cooling power enabling allowing balance between eddy diffusional and ΔP

Current super-conducting magnet is not long enough and has poor magnetic field design

New s/c magnet designed for uniform 6.5 T axial field so each layer has same high field

Progress:

- Includes counter windings to taper field down to uniform 0.1 T low field at correct position
- Magnet windings and length designed in tandem with regenerator geometries for 0.7 aspect ratios for all layers
- These criteria and known refrigerant masses result in a ~65 cm long s/c magnet with ~20cm open bore

30 cm

18 cm

New s/c magnet will improve magnetic field profile and magnetic field gradients

• Current s/c magnet and drive stroke limit regenerators field changes + range of field gradients

• New design with "ears and counter coils" has constant magnetic high/low fields and same field gradients

Design basis for MOLS prototype

- Process gas:
 - Inlet is clean, dry air at 100 psia and 295 K; outlet is liquid air at ~100 psia and ~100 K.
 - Flow synchronized with AMR cooling steps of dual regenerators
- Active Magnetic Regenerative Liquefier subsystem specifications for MOLS
 - Temperature span is ~280 K to ~100 K with cooling of ~30 K/layer
 - Six layers integrated into each ~20cm dual regenerator; one proven refrigerant per layer
 - Ferromagnetic refrigerants have Curie temperatures that are ~30 K apart
 - Validated T, B_a dependent heat capacities and adiabatic temperature changes
 - Layers aspect ratio (L/D) ~0.7; porosity of ~0.37; spheres of ~150-250 µm; monolithic
 - Superconducting magnet; 6.5 T uniform field over 25cm; 0.1 T over 25cm; 13cm change regions
 - Frequency is ≥ 0.25 Hz
 - Heat transfer fluid is liquid that freezes at ~90 K so total pressure drops low from blows
 - Diversion flow values to adjust flows/layers; bypass flow value between coldest layers into counterflow process heat exchanger

Market benefit & assessment

- **Benefits**:
 - Modular system, scale-up by numbering up
 - Increase efficiency by up to 50% even at "small scale"
- Techno-economic analysis, Task 7, not officially started yet
 - Have surveyed cost of materials
 - Gd
 - Gd_{0.75}Dy_{0.25}
 - Gd_{0.49}Dy_{0.51}
 - Gd_{0.24}Dy_{0.76}
 - Gd_{0.27}Ho_{0.73}
 - Gd_{0.74}Er_{0.26}Al₂

Element	Some industrial uses	Cost (\$/kg)*
Gd	No large scale industrial uses, but many specialized uses ranging from shielding in nuclear reactors to medical uses (MRI contrast agent)	32-55
Y	Yttrium has many uses but is primarily used in LEDs, CRTs, and SOFC.	6-35
Tb	Biggest use is in green phosphors for lighting,	400-550
Dy	Major use is in magnets, but also used in neutron-absorbing control rods, and several other small applications	230-350
Er	Nuclear technology in neutron-absorbing control rods, Er doped fibers for optical communications and Er/Yb lasers	34-95
Но	Magnets, Ho is a dopant in yttrium-iron-garnet (YIG) and yttrium- lanthanum-fluoride (YLF) solid-state lasers.	~200**

Cost as of 12/31/2017 from http://mineralprices.com/default.aspx#rar last accessed 5/2/2018 **Cost as of 05/02/2018 from https://www.alibaba.com/product-detail/Rare-Earth-Element-Ho-Holmium-Metal 60670489854.html ٠

Technology-to-Market

- Modular air liquefaction units
 - 1-4 tonne O₂/day modules in cargo containers
 - Scale-up by numbering up
- Potential industry collaborators: in discussions with gas providers

Remaining challenges- MCL

- Validate the aspect ratio results
 - Build intermediate system to test while new s/c magnet is being built
- Seals
 - New energized seals and epoxy
- Startup diversion flow
- Increase frequency
- Scale-up of the lab-scale unit to pilot plant
- Operation mode: reciprocating (current design) vs rotary
- Oxygen separation and purification: we propose microchannel technology, but this is not in our current scope

Concluding remarks

- Objective and Deliverable:
 - Feasibility of magnetocaloric demonstrated by liquefying air at a rate of 1kg/day
 - Techno-economic analysis:
 - ✓ Aspire to increase the FOM by 50%
 - ✓ Modular 1-4 tonne/day air liquefier,
 - ✓ Use optimal design to calculate expected liquefier FOM, perform techno-economic analysis for larger liquefier
 - ✓ Propose next steps
- Next steps
 - Finalize the design
 - Build and test
- Current technical challenges
 - Seals
 - Increase the frequency

Acknowledgements

- DOE- Fossil Energy
 - David Lyons
 - Venkat Venkataraman
- DOE- Fuel Cell Technology Office
 - Neha Rustagi
- The Team
 - Kerry Meinhardt
 - Ed Thomsen
 - Evgueni Polikarpov
 - John Barclay
 - Corey Archipley

26

Thank you

Remaining challenges: O_2 separation & purification: microchannel technology

- What about scaling the air separations?
 - Microchannel based distillation to separate the O₂
 - This is not in current project scope
- Distillation
 - Mass transfer is dominated by liquid phase diffusivity (D)
 - Liquid phase mass transfer is enhanced by increasing liquid phase surface area
 - HETP Height equivalent to a theoretical plate
 - \checkmark Origins in distillation theory relating mass transfer efficiency of packed columns to tray or 'plate' columns
 - ✓ Each 'plate' represents one theoretical stage of separation and HETP is the height of column needed for each stage
 - \checkmark Air dual column distillation can have up to 75 stages^{*} (combined)
- Process Intensification
 - The hypothesis is that microchannel architecture can be used to reduce the size of the separations equipment by reducing required residence time via enhanced mass transfer

Comparison to other distillation techniques

ATIONAL LABORATORY	
Cryogenic Distillation Technique	
Commercial packing	
Sulzer's best laboratory packing - Best A	vailable Technology (BAT)- theoretical
Cryogenic microchannel distillation - Velo	ocys Inc.
PNNL's work in 4" Device	
Propane/propylene	
Methane isotopes	
CFD modeling (Propane/Propylene)	
	 Commercial Packing Minimum HETP is ~30 cm 100 separations stages in 30 meters Best Available Technology- theoretical Minimum HETP is ~2 cm 100 separations stages in 2 meters Our Technology
	 HETP of 0.5 cm 100 separation stages in 0.5 m w/ room for in

^a Sulzer Structured Packings for Distillation, Absorption and Reactive Distillation. <u>https://www.sulzer.com/cs/-/media/Documents/ProductsAndServices/Separation_Technology/Liquid_Liquid_Extraction/Brochures/Structured_Packings.pdf</u>
 ^b Hickey, T. Advanced Distillation Final Report. Velocys Inc., <u>https://www.osti.gov/scitech/servlets/purl/1000368</u>

HETP (cm)	
30-60	
2-8 ^a	
4.3 ^b	
1.0	
0.5	
0.1	

mprovement

Axial thermal conduction **b** irreversible entropy in low L/D aspect ratio regenerators

$$FOM = \frac{W_{ideal}}{\dot{W}_{real}}$$

$$\dot{W}_{ideal_{Layer}} = \dot{Q}_{C_{Layer}} \left(\frac{T_{H}}{T_{C}} - 1\right)$$

$$\dot{W}_{real_{Layer}} = \left(\dot{Q}_{CHEX} + \dot{Q}_{LC} + \dot{Q}_{Para}\right) \left(\frac{T_{H}}{T_{C}} - 1\right) + \frac{T_{H} \int_{T_{C}}^{T_{H}} \Delta S_{IRR} dT}{\int_{T_{C}}^{T_{H}} dT}$$

$$\Delta S_{IRR} = \Delta S_{IRR_{HT}} + \Delta S_{IRR_{DP}} + \Delta S_{IRR_{LC}} + \Delta S_{IRR_{EC}}$$

$$\Delta S_{IRR_{HT}} = 2 * \left(\frac{\dot{Q}_{Reg}}{NTU + 1} \left(\frac{1}{T_{C}} - \frac{1}{T_{H}}\right)\right)$$

$$\Delta S_{IRR_{DP}} = \frac{\dot{m}_{He}}{\rho_{He}} * \frac{\Delta p_{Reg}}{T_{H}}$$

$$\Delta S_{IRR_{LC}} = 2 * \left(\frac{\pi * k_{Regeff} * D_{Reg}}{4 * a_{ratio}} * \frac{(T_{H} - T_{C})^{2}}{T_{H}T_{C}}\right)$$

$$\Delta S_{IRR_{EC}} = 2 * \left\{\left(\frac{16}{5 * \pi}\right) \left(\frac{\pi d_{P}^{2}}{4}\right) * \frac{V_{MM} * v^{2} * \Delta B^{2}}{32 * \rho_{eMM}T_{ave}}\right\}$$

$$k_{Regeff} = k_{MM_{eff}} + k_{He_{static}} + \rho_{He}c_{p_{He}}D_{L_{Reg}}$$

$$\dot{Q}_{LC} = k_{Reg_{eff}} * \frac{\pi}{4} \frac{D_{Reg}}{a_{ratio}} * (T_{H} - T_{C})$$

EXAMPLE

- 280 K to 242 K; 0.25 Hz; 493 gram Gd; 200 micron spheres, 0.37 porosity; 6T field change; 400 psia He HTF @ 4 gm/s;
- Q_{coldMAX}= 56W @ 242 K
- $D_{\text{laver}} = 7 \text{ cm}; \text{ L/D}_{\text{ratio}} = 0.37$
- k_{Regeff} = 2.69 W/m K when k_{Hestatic} = 0.145 W/m K!
- $Q_{dotLC} = 15.1 W; Q_{dotPARA} = 5 W$
- $Q_{dotNFT} = 56 15.1 5 W = 36 W!$
- FOM reduced to 0.47 in this example
- Design needs be changed to increase L/D for FOM = 0.65
- LONGER Regenerator requires **LONGER Magnet**

Task 3.0 – Synthesize magnet refrigerants and build regenerators

• Status:

Materials ordered

1/16" dia. EPTFE packing

Monolithic Regenerator-Layer

G-10 housing

Critical (bold) and progress milestones

Milestone	Description	Date	Explanation
M1, progress	Regenerator Design	2/28/2019	Design a MCL that can cool 1.0 kg at Magnetocaloric material types and at layer/stage (6-10) will be determined
M2, progress	Modify the MCL demonstration platform	5/31/2019	PNNL will modify previous MCL refrig new liquefier system. This will include for improved heat transfer fluid flow a regenerator housing designed.
M3a progress	Materials characterization	7/30/2019	Quality check on the materials identities the Curie Temperature is with 5K of t
M3b: critical	Complete shake- down testing of the system	9/30/2019	Activities will include assembly of into new regenerators, loading the system and ensuring that all lique components are working within ac Shakedown tests should show co below ~150 K with 100 K as ultimate temperature.
M4: critical	Demonstrate air liquefaction	11/30/2019	Demonstrate the ability to liquefyinkg/day. Projected performance of the version of system, based on the term have a FOM of >0.5.

ir/day from <100 K. mounts for each

•

gerators and build the le upgrading the pumps and building the new

fied in task 1 to ensure target specs.

F spherical materials e regenerators into the efier system cceptable ranges. oling from ~280 K to te target cold

ng air at a rate of > 1.0 the commercial esting data, should

Pacific

Diversion of heat transfer fluid flow allows control of cooling power of each layer, but increases complexity Northwest

Dual active magnetic regenerators and super conducting magnet are key subsystems

Active Magnetic Regenerator

Super conducting magnet

April 25, 2019

What about oxygen separation? Note: this is not part of our current scope

• We can potentially use microchannel architecture for scaling down the distillation

High heat transfer coefficients

- I High heat transfer surface area per unit volume
- Low pressure drop achievable through short flow distance

Traditional distillation

- Separation of chemical components via boiling point differences
- Relative volatility (α) ratio of vapor pressures of components in a liquid mixture
 - α < 2.4^{*} for 20% O₂ in N₂
- Challenge enhance mass transfer

Distillation and process intensification by microwick technology

Distillation

- Mass transfer is dominated by liquid phase diffusivity (D)
- Liquid phase mass transfer is enhanced by increasing liquid phase surface area
- HETP Height equivalent to a theoretical plate
 - Origins in distillation theory relating mass transfer efficiency of packed columns to tray or 'plate' columns
 - Each 'plate' represents one theoretical stage of separation and HETP is the height of column needed for each stage
 - Air dual column distillation can have up to 75 stages^{*} (combined)

Process Intensification

 The hypothesis is that microchannel architecture can be used to reduce the size of the separations equipment by reducing required residence time via enhanced mass transfer

Microchannel Distillation

• Enhance mass transfer by incorporating microwicks

*Jones et al, Fuel Processing Tech 92 (2011) 1685

http://www.certech.be/en/activitie s/intensification/

PNNL's patented microwick technology

Thin microchannel wicks for liquid flow – 0.004"

Thicker microchannel shims for vapor flow – 0.02"

Pacific

Northwest

 $HETP \propto$

HETP scales with the square of the wick thickness, *h*:

Operating principle

Pacific

Advantages

Suitable for scale-up by increasing the amount of layered wicks

- Can be operated over a large temperature range
- Can be operated in the horizontal or vertical direction
- Microchannel benefits
 - Small Footprint
 - Portable
 - Rapid mass/heat transfer

Microchannel "Cryogenic" distillation
 1% Propane in Propylene: α=1.28
 ¹²C/¹³C isotopes of methane: α=1.0028

Results in 4" active area microchannel distillation device

Task 3.0 - Synthesize MCL magnetic refrigerants and **build regenerators**

- Purchase the materials
- Design the regenerators
- Make mechanically stable monolithic regenerators
- Assemble regenerators into hermetic G-10 housings capable of cryogenic cycles with pressurized helium heat transfer gas

• Status:

Discussed with AMES the materials purchase and started work on the purchase agreement

Spherical particle synthesis options

Hot gas atomization

Industrial used ۲

- Can achieve target diameters lacksquare
- High interior porosity (bad)
- Wide particle size distribution
- Wide shape distribution

Plasma atomization

- Industrial used
- Low interior porosity
- Fine particles (difficult for our desired range)
- Wide particle size distribution
- Wide shape distribution

Rotating disk atomization

Can control size and distribution Spherical particles Low interior porosity Potential to be 30% less expensive Not industrial utilized

Rotating Disk Atomization System for RE MC Powders

Rotating disk atomizer (RDA) makes reactive metal powders.

> Co-rotating oil quench bath envelopes powders instantly, providing passivated surface film. This unique capability was adapted for making pure rare earth (RE) and RE-RE alloys as spherical powders in the right size for magnetic refrigeration.

HE Ames Laborator na Materials & Energy So

Gd_{0.16}**Ho**_{0.84} **RDA-1-20:** Image of Atomization Process

mode" disintegration from HS still frame.

THE Ames Laboratory Creating Materials & Energy Solut

Rotating disk atomization produces high quality spheres at desired diameters

Cross section shows low porosity

Gd_{0.83}Dy_{0.17}

Gd_{0.7}Tb_{0.3}

Gd_{0.67}Er_{0.33}

Task 4.0 - Modify existing test stand for new regenerators

- Upgrade reciprocating pump for heat transfer gas to increase mean pressure (and mass flow rate)
- Upgrade the s/c magnet system to enable layered or staged designs
- Status:
 - Begun preliminary magnet design

48

Upgraded subsystem

Current super-conducting magnet is not long enough and has poor magnetic field profile

- New Magnet designed for uniform 6.5 T axial field so each layer has same high field
- Includes counter windings to taper field down to uniform 0.1 T low field at correct position
- Magnet windings and length designed in tandem with regenerator geometries for 0.7 aspect ratios for all layers
- These criteria and known refrigerant masses result in a ~65 cm long s/c magnet with ~20cm open bore

Current Super-Conducting Magnet

18 cm

Current super-conducting magnet is not long enough and has poor magnetic field profile

- The current s/c and regenerator design doesn't allow the regenerator to completely leave the magnetic field
 - Range of magnetic field across the regenerator
 - Active magnetic regenerator 0.3T Super conducting 6T magnet

Active magnetic regenerator Shaping coil Super conducting magnet Shaping coil

• New design with shaping coils Improves magnetic field profile • 6T across regenerator

50

Task 5.0 - Demonstrate new MCL Liquefier at target air liquefaction rate

- Design compact, highly effective ~100 psia air condensing heat exchanger cooled by cold helium bypass flow CHEX
- Operate system to liquefy air
- Status: Not started

Heat exchanger design used in propane liquefaction

Coiled-fin tube exchanger in CHEX between dual AMRs

Dual AMR assembly

Task 6.0 – Analyze test results to determine optimum number of regenerator layers/stages

- Since this is a feasibility test and there are multiple design options, we will evaluate our results and consider if/how improvements can be made
- Compare actual performance with modeled predicted performance and, if necessary, update model to ensure within 15% of experimental results
- Status: Not started

Project Structure: Task 7.0 - Refine techno-economic analysis to feed **Go/No-Go decision**

- Some of the design features of scaledup liquefier are:
 - Reciprocating dual regenerator design
 - Stationary 6-T s/c magnets (2 ea)
 - 1-Hz AMR cycle frequency
 - Heat exchangers
 - Pumps & heat transfer fluid
 - Etc.
- Perform detailed FOM calculation as a function of scale
 - Calculate ideal work rate, real work rates and resultant FOM
 - Include all major sources of inefficiencies
- Techno-economic analysis
- Status: Not Started yet

Diversion flow valves are controlling the temperature

Temp vs Time of Bottom Regenerator w/ Layers 1 & 2 Activated by Fluid Flow and Magnetic Field Change (0.125 Hz, 6 T) During Cooldown Procedure

Inlet

Layer 5

Layer 4/5

Layer 3/4

Layer 1/2

Layer 2/3

Demonstrated cooling power increased using bypass

Bypass flow increases cooling by 25%

Thermal mass difference increases at 6.5-7 T gives > 6% by-pass flow

215g Gd Regenerator (upper) 215g Gd/Gd_{0.74}Tb_{0.26} Regenerator (lower) 3.3 - 0.6 Tesla field 200 psia He gas HTF 4 sec AMR cycle HTF flow rate better matched to magnetocaloric cooling power

Background:

PNNL's early hardware achieved 100K temperature span under listed operating conditions

1kg Gd Regenerators 0.6 to 3.3T field 200 psia He gas HTF 4 sec AMR cycle

World Record ΔT span for these conditions to our knowledge

Background:

Efficiency of current air liquefaction units decreases as they are scaled down

	kg/s	kg/s	kW	kWh/t		kWh/t		kg	\$\$	
	Air Mass Flow Rate	O2 Mass Flow Rate	Total Air Liquefaction Thermal Load	Ideal Work Rate	Conventional Liquefaction FOM*	MOLS Energy Requirements	MOLS Unit FOM**	Magnetic Material Needed	Material Cost***	
10 Metric Tonnes/day LO ₂	0.5	0.12	96	146	0.25	203	0.72	765	\$382 k	
90 Metric Tonnes/day LO ₂	4.5	1.04	864	146	0.3	184	0.8	6855	\$3.4 M	
* T. M. Flynn, Cryogenic Engineering 2nd Edition, New York: Marcel Dekker, Inc, 2004. \dot{W}_{Ideal}										

- ** FOM includes the work associated with cryocoolers, HTF pumps, drive actuators, etc. Assumes 0.65 kW/kg material at 1hz, 6T field change
- *** Material cost assumes \$500/kg for material and processing to spheres.

$$FOM = \frac{\dot{W}_{Ideal}}{\dot{W}_{Real}} \qquad \stackrel{\bullet}{W}_{Real} = \stackrel{\bullet}{Q}_{C} \left(\frac{T_{H}}{T_{C}} - 1 \right) + \frac{T_{H} \int \Delta S_{IRR} dT}{\int \int_{T_{C}}^{T_{H}} dT} \qquad 57$$

PNNL has identified potential materials to operate over the temperature span

Material	Operating Temperature Span	Curie Temperature					
	К	К					
Gd	280-260	293					
Gd _{0.83} Dy _{0.17}	260-240	274					
Gd _{0.30} Tb _{0.70}	240-220	253					
Gd _{0.69} Er _{0.31}	220-200	232					
Gd _{0.32} Dy _{0.68}	200-180	213					
Gd _{0.15} Dy _{0.85}	180-160	193					
Gd _{0.27} Ho _{0.73}	160-140	173					
Gd _{0.16} Ho _{0.84}	140-120	153					
Gd _{0.23} Er _{0.77}	120-100	132					
Gd _{0.58} Er _{0.42} Al ₂	100-80	110					
Gd _{0.49} Er _{0.51} Al ₂	80-60	93					
Gd _{0.30} Er _{0.70} Al ₂	60-40	70					
Gd _{0.23} Er _{0.78} Al ₂	40-20	52					

Element	Some industrial uses	Cost (\$/kg)*
Gd	No large scale industrial uses, but many specialized uses ranging from shielding in nuclear reactors to medical uses (MRI contrast agent)	32-55
Y	Yttrium has many uses but is primarily used in LEDs, CRTs, and SOFC.	6-35
Tb	Biggest use is in green phosphors for lighting,	400-550
Dy	Major use is in magnets, but also used in neutron-absorbing control rods, and several other small applications	230-350
Er	Nuclear technology in neutron-absorbing control rods, Er doped fibers for optical communications and Er/Yb lasers	34-95
Но	Magnets, Ho is a dopant in yttrium-iron-garnet (YIG) and yttrium- lanthanum-fluoride (YLF) solid-state lasers.	~200**

Cost as of 12/31/2017 from http://mineralprices.com/default.aspx#rar last accessed 5/2/2018 **Cost as of 05/02/2018 from https://www.alibaba.com/product-detail/Rare-Earth-Element-Ho-Holmium-Metal 60670489854.html

• •

										2			.			X 4			
×				01	real 02	$\frac{1}{03}$	04	05	Yea O6	$\frac{112}{07}$	08	09	Υ¢	ar 3	012	013	Yea	$\frac{11}{015}$	016
Pacific	Phase 1		50-100 kg H2/day MCL system design		<u>Q2</u>	<u>Q</u> 3	<u>7</u>	QJ	QU	<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	<u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	ري ري	QIU	QII	Q12	Q15	<u><u> </u></u>	Q15	QIU
Northwe	st Ta	sk 1.1	Rotary wheel design																
NATIONAL LABORA	ORY	Task 1.1.1	Rotating seals																
		Task 1.1.2	Rotating system modeling																
	Та	sk 1.2	Reciprocating piston design																
	Та	sk 1.3	50-100 kg H2/day MCL design																
		Task 1.3.1	Cross-cutting issues																
		Task 1.3.2	Design approach down-selection																
		Task 1.3.3	AMR desgin																
		Task 1.3.4	S/C magnet design																
		Task 1.3.5	Sub-system design																
		Task 1.3.6	Detailed system design																
		Task 1.3.7	H2 Safety review																
		Task 1.3.8	Design review							~									
	Phase 2								Πî										
	Та	sk 2.1	Materials component procurement							٦									
		Task 2.1.1	Magnetocaloric materials procurement							Ļ									
		Task 2.1.2	Component procurement and testing																
	Та	sk 2.2	Sub-system assembly and shakedown									L							
		Task 2.2.1	Sub-system assembly and integration										•						
		Task 2.2.2	System shakedown testing											1					
	Та	sk 2.3	Demonstration and parametric operation											¥					
	Та	sk 2.4	1-2.5MMT/D MCL design							7									
		Task 2.4.1	Design 1-2.5MMT/D MCL system												*				
		Task 2.4.2	Industry Engagement														X		
	Phase 3		1-2.5 MMT/D Demonstration (TBD)																
	Project 1	managemen	t																

Hot-cold temperatures of layers during 280K -**166K run with 5-layer GEN-IIC**

