Pressure Driven Oxygen Separation via Mixed Conducting Dual Phase Technology

David Reed, Josef Matyas, Jon Helgeland, Lorraine Seymour, Greg Coffey, Nathan Canfield, Kerry Meinhardt, Jeff Stevenson

> Pacific Northwest National Laboratory Richland, WA

2019 Annual Project Review

Gasification Systems Pittsburgh, PA April 10, 2019

> Project Description and Objectives

> Project Background

> Experimental Procedure and Analysis Methods

> Project Update

- Composite Membrane
- > Porous Support

> Next Steps/Concluding Remarks

Project Description and Objectives

- The overall goal of the proposed effort is to develop a small scale, modular air separation unit providing 10-40 tons/day of high purity oxygen to a 1-5 MWe gasifier at low cost and high efficiency
 - Mixed conducting two phase material capable of separating oxygen at 600-700°C.
 - Planar membrane/support structure
 - Utilize the difference in oxygen partial pressure across the membrane to drive oxygen from air, <u>no electrical energy</u> <u>needed for oxygen separation</u>

Background – Oxygen Separation

- > Cryogenic Air Separation mature development
 - Low energy demand at high capacity (4000 T/day)
 - Energy demand very high at low capacity (i.e 10-40 T/day)
 - Very high purity (99+)
- Pressure Swing Adsorption (PSA) mature
 - Economical at low capacities (i.e. 300-400 T/day)
 - Purity ~ 95%
- Polymer Membranes mature
 - Low purity (~ 40%)

Ceramic Membranes – R&D

- High purity (99+), thermal integration
- Can be economical depending on oxygen permeability
- Examples: OTM and ITM

Background – Ceramic Membranes

<u>Planar</u> vs Tubular Design

- Planar design
- Ease of manufacturing
- High surface area
- Increased sealing surface area
- Lower/medium temperature (600-700°C)
- Two phase composite membrane (σ_i and σ_e)
- SOFC design experience at PNNL

Pure Oxygen

Background – Bilayer structure

Planar Membrane/Porous Support

Composite membrane

- Dense
- High σ_i and σ_e
- Compatible with glass seal
- Inexpensive fabrication
- No electrodes

Porous Support

- ~ 50% dense
- TEC match to membrane
- Mechanical integrity
- Co-fired w/ membrane

→ Design will leverage SOFC stacks developed at PNNL

Background – Ceramic Membranes

Thin composite membrane (~ $10 \mu m$)

Composite membrane

- Two phase composite
- Similar TEC
- Limited interaction during firing
- High σ_i phase
- Sufficient σ_e phase
- Compatible with glass seal

Material Selection

- Ionic Conductor
 - YSZ

<u>Electronic Conductor</u>

•
$$LaCrO_3$$

Background – Dense Membrane

Preliminary Oxygen Flux Calculations

	Doped Ceria	LSM-20
Electrical Conductivity (S/cm)		
600°C	-	100
700°C	-	120
Ionic Conductivity (S/cm)		
600°C	0.018	_
700°C	0.04	-
Thermal Expansion Coefficient (10 ⁻⁶)	11.7	11.5

	600°C	700°C
Ionic Conductivity (S/cm)	0.018	0.039
pO2 - air side (atm)	0.2	0.2
pO2 - vacuum side atm	10 ⁻⁴	10 ⁻⁴
Thickness (µm)	10	10
O_2 Flux (A/cm ²)	3.4	8.1
Tons of O_2/day	10	10
Cell area (cm ²)	420	420
Cells/stack	100	100
# stacks required	8.99 (<mark>9</mark>)	3.72 (4)

 \rightarrow # of stacks is < 10 for both cases which appears to be very reasonable for a 10 ton/day modular ASU

Background – Porous Support

Porous Support

- Two phase composite $(Al_2O_3 \& MgO)$
- Tailor the TEC to match membrane
- Mechanical support
- Use of fugitive phase if necessary
- Sintering aid, Y_2O_3
- Match shrinkage profile of membrane

Proposed Glass-Ceramic Seal

- Barium aluminosilicate glass
- Modified with B₂O₃ and CaO
- Glass-ceramic
- TEC match to membrane
- Minimal interactions
- Extensively studied at PNNL
 - Very stable up to 800°C
 - XRD, SEM,
 - Thermal cycling
 - SOFC tests

Background – Stack Design

- Low cost 400 series stainless punched to net shape & used as manifold
- 400 stainless also used as gas isolation plate
- Barium aluminosilicate glass seal
- Low cost manufacturing methods

Experimental Procedure & Analysis Methods

Dense Membrane – V_f (ionic conductor)

- σ_{ionic} and $\sigma_{\text{electronic}}$
- Chemical and microstructural stability (XRD and SEM w/ EDS and EBSD)
- Dilatometry and sintered shrinkage

4 pt σ measurement

Porous Support – $V_f(MgO)$

- Mechanical integrity
- Chemical and microstructural stability (XRD and SEM w/ EDS and EBSD)
- Dilatometry and sintered shrinkage

Bilayers (membrane and support)

- Tape casting and lamination process
- Co-sintering for a flat, crack free sample

Experimental Procedure & Analysis Methods

Oxygen Permeability Measurements

- Temperature
- Oxygen partial pressure
- Catalytic surface treatments (if needed to improve surface exchange kinetics)

Project Update

Material Selection

Composite Membrane - V_f (ionic conductor)

Electronic conducting phase $La_{0.9}MnO_3$ (LM90) $La_{0.75}Sr_{0.2}MnO_3$ $La_{0.6}Sr_{0.4}Fe_{0.8}Co_{0.2}O_3^*$ $\frac{\text{Ionic conducting phase}}{\text{Ce}_{0.8}\text{Sm}_{0.2}\text{O}_2}$ $\frac{\text{Ce}_{0.9}\text{Gd}_{0.1}\text{O}_2}{\text{Ce}_{0.8}\text{Gd}_{0.2}\text{O}_2}$ $\frac{\text{Ce}_{0.8}\text{Sm}_{0.2}\text{O}_2 \text{ w/ 1\% Co (SDCC)}}{\text{Ce}_{0.8}\text{Sm}_{0.2}\text{O}_2 \text{ w/ 1\% Co (SDCC)}}$

Support Structure - $V_f(MgO)$ Al₂O₃ MgO Y₂O₃ Carbon black PMMA spheres

* LSCF is a mixed conductor

Project Update – Sintering SDCC/LM90

Membrane

Composite Sintering

Proudly Operated by Battelle Since 1965

Pacific Northwest

NATIONAL LABORATORY

Project Update – Phase Analysis SDCC/LM90 (70/30)

Membrane

Project Update – Sintering SDCC/LM90 (SEM)

Membrane

Composites sintered at 1400°C

Project Update – Expansion, conductivity, and O₂ flux

Membrane

		700°C		
Membrane Component	α	$\sigma_{electronic}$	σ_{ionic}	j
	(10 ⁻⁶)	S/cm		A/cm^2
$La_{0.9}MnO_{3}(LM90)$	*	*	_	_
$La_{0.75}Sr_{0.2}MnO_3$	11.5	120	_	-
$La_{0.6}Sr_{0.4}Fe_{0.8}Co_{0.2}O_{3}$	14.3	400	0.05	
$Ce_{0.8}Sm_{0.2}O_2$	11.7	_	0.04	-
$Ce_{0.9}Gd_{0.1}O_2$	11.6	-	0.035	-
$Ce_{0.8}Gd_{0.2}O_2$	11.7	-	0.04	_
Ce _{0.8} Sm _{0.2} O ₂ w/ 1% Co (SDCC)	*	-	*	_
Composites				
SDCC/LM90 (70/30)	11.7		*	*

Pacific Northwest NATIONAL LABORATORY

Project Update – MgO/Al₂O₃ Porous support

Support

Material Selection and of Interest

MgO – Al₂O₃ Phase Diagram

Pacific Northwest NATIONAL LABORATORY

Project Update – Sintering MgO/Al₂O₃

Support

Composite Sintering

Pacific Northwest

Proudly Operated by Battelle Since 1965

20

Project Update - Phase Analysis MgO/Al₂O₃ (70/30)

- MgO and Alumina react to form spinel MgAl₂O₄ during sintering between 1300-1500°C.
- Alumina consumed in reaction, sintering aid (Y₂O₃) forms YAlO₃.

fic Northwest

by Battelle Since 1965

Project Update – Expansion and conductivity

Porous Support

		700°C		
Support	α	$\sigma_{electronic}$	σ_{ionic}	
	(10 ⁻⁶)	S/a	cm	
Al_2O_3	8.8		-	
MgO	13.4	-	/-	
MgAl ₂ O ₄ (spinel)	7.8	- >	-	
Composites				
MgO/Al ₂ O ₃ (70/30)	11	_	-	
MgO/Al_2O_3 (80/20)	11.8	/ -	- \	

Next Steps/Concluding Remarks

Next Steps

- Complete physical, microstructural, electrical, and thermal property evaluations of compositions of interest (membrane and support)
- Analyze oxygen permeability measurements ↔ surface treatments
- Tape cast and laminate bilayers (flat and crack free)

Concluding Remarks

- Preliminary results are encouraging and follow early predictions
- Oxygen permeability measurements and results are critical to minimize number of stacks required to produce 10 tons/day of oxygen

The authors wish to thank Venkat Venkataraman, David Lyons, and Jai-Woh Kim from DOE Office of Fossil Energy for their support of this project.

