

Small-Scale Engineered High Flexibility Gasifier

DOE Award No. DE-FE0031531

2019 Annual Project review Meeting

Crosscutting Research, Rare Earth Elements, Gasification Systems and Transformative Power Generation

> *Pittsburgh,PA April 9-11,2019*

Project Team

Santosh Gangwal, PhD – Pl Mikhail Granovskiy, PhD– Co-Pl Swananda Tupsakhre, PhD Kevin McCabe

Unitel technologies

Hong-Shig Shim, PhD Martin Denison, PhD Kevin Davis, PhD Jost Wendt, PhD

Ravi Randhava, PhD

Project Goals

- Develop a fuel flexible and modular/shop fabricated oxygen-blown small-scale coal gasifier to produce medium BTU syngas with
 - -Tar < 10 ppmw
 - Ammonia < 1 ppmv
- Demonstrate gasifier performance to meet target at bench-scale (10-50 lb/h)
- Design a 1-5 MW combined heat and power (CHP) system and conduct a technoeconomic evaluation (TEA)

Commercial Coal Gasifiers

- Large scale commercial coal gasifiers
 - Entrained flow (GE/Texaco, E-Gas/CBI,
 Shell and others)
 - Updraft moving bed (Lurgi)
- Other large scale coal gasifiers
 - Fluidized bed
 - Transport
- Commercial small-scale coal gasifiers do not exist

Small-scale Wood Gasifiers are Commercial

- Downdraft moving bed
 - Many small commercial installations
 - Air blown, sub-atmospheric
 - -Used mainly for producing heat
 - Very few successful power applications, mostly 40 KWe or smaller
- Reduced tar formation
 - -Volatiles pass through a combustion zone
 - Tar make is typically reduced to 100 ppmw
 - -Ammonia typically not reported

Downdraft Design Chosen for Project

- Develop oxygen-blown pressurized coal gasifier suitable for small scale distributed applications
 - Modular, standardized factory construction
- Construct computational model to optimize design
- Optimally designed to
 - Produce medium BTU syngas
 - Manipulate char make, quality, reactivity
 - Mitigate/reform tars, decompose NH₃
- Design for fuel flexibility coal, biomass, MSW

Comparison to State of the Art

	State of the Art-	This project	
	commercial	i nis project	
Fuel	Mostly wood	Non-caking coal	
Scale		Bench-scale; Ultimate	
	40 KVV	goal1-5 MW	
Oxidant	Air	Oxygen	
Steam	No	Yes	
Pressure	Subatmospheric	3-5 atm	
Gasification	~750 800 ⁰ C	~050 1100 ⁰ C	
zone temp		1950-1100 C	
Feed flexibility	Low	High	
Product	Mastly boat char	Char, Heat, power, fuel,	
flexibility	wostry neat, char	chemicals	
Syngas	Low BTU	Medium BTU	
Tar	200 ppmw	10 ppmw	
Ammonia	Not reported	1 ppmv	

Project Tasks

- Computational modeling to optimize gasifier design
- Laboratory testing to obtain model input parameters
 - Chars produced at relevant gasification conditions
 - -Gasification reactivity measurements to develop a kinetic expression
- Design and construct gasifier based on modeling results
- Commission & test gasifier, demonstrate performance, update computational model
- Design 1-5 MW energy conversion system
- Develop Aspen-based model for integrated 1-5 MW energy conversion system, conduct TEA

Combination of High T and Char Catalysis are Keys

- Maintain 1000-1050°C + for sufficient depth in gasification zone to fully reform tar and decompose ammonia. Is this possible?
- Based on literature Information
 - It can be concluded that essentially complete tar reforming should be achieved over coal chars at ~1000°C within <1 sec [e.g. D.Fuentes-Cano et al., Chem Engg. J, 228 (2013) 1223]
 - Results from multi-stage multi-vessel biomass gasifier (pyrolysis-partial oxidation-char gasification) indicate that tar can be reduced to <15 ppmw [e.g. P.Brandt et al., Energy Fuels 2000, 14, 816]
- Our mass/energy balance and modeling efforts indicate that it is possible to maintain the required temperature in the gasification zone of our **simpler, single vessel** downdraft gasifier with proper management of the heat release from combustion

Moisture	24.29
C	52.32
Н	3.95
N	0.8
S	0.26
Ash	4.99
O by difference	13.39
Total	100

Initial Ash Fusion temperature: 1210°C

Major Ash Components (Wt%)

SiO2	30.2
AI2O3	15.4
Fe2O3	5.9
CaO	24.3
MgO	4.8
SO3	13

Input	(lb/h)	Outpu	t (lb/h)
Coal	25.00	Syngas	74.75
steam	36.70	Char	1.59
Oxygen	14.65		
Total	76.34		76.34

	vol %**	Wt %
CO2	7.1	16.3
CO	20.2	29.5
H2	18.1	1.9
H2O	54.6	52
N2		0.27
H2S		0.05
Total	100	100
	** N,S free	

S/C = 1.47 O/C = 0.59

SR

Gasification Kinetics

- Steam and CO2 gasification measurements were made on chars produced by pyrolysis under various time and temperature conditions using TGA
- These data were used to develop a best fit rate equation
- Two kinetic equations from recent literature were used:
 - Wang, Y, D. A. Bell "Competition between H₂O and CO₂ during gasification of Powder River Basin coal" Fuel 187 (2017) 94-102.
 - Umemoto, S., Kajitani, S., Hara, S., "Modeling of coal char gasification in coexistence of CO₂ and H₂O considering sharing of active sites," Fuel 103 (2013) 14-21.
- Best fit parameters were determined by non-linear optimization (Matlab)

$$\frac{dX}{dt} = \left\{ \frac{K_1 p_{H_2 0}}{1 + K_2 p_{H_2 0}} + \left(1 - \theta_{H_2 0}\right) \frac{K_4 p_{C 0_2}}{1 + K_4 p_{C 0_2}} \right\} (1 - X) \sqrt{1 - \Psi ln(1 - X)}$$
Wang and Bell
Competing Sites
Model
$$\frac{dX}{dt} = \left\{ \frac{K_{21} p_{H_2 0}}{1 + bcK_{12} p_{C 0_2} + bcK_{13} p_{C 0} + K_{22} p_{H_2 0}} + \frac{K_{11} p_{C 0_2}}{1 + K_{12} p_{C 0_2} + K_{13} p_{C 0} + \frac{a}{c} K_{22} p_{H_2 0}} \right\} (1 - X) \sqrt{1 - \Psi ln(1 - X)}$$

Umemoto Shared Active Sites Model

Umemoto Shared Sites Equation Provided a Better Fit

Figure 1. Kinetics model fits for Umemoto and Wang Bell for 5 trials data sets

SR

REI Modeling Effort

- Based on prior work REI employed a two-stage approach to modeling the SR modular gasifier
 - -Stage 1 adapted an existing, one-dimensional, zonal model. The purpose of the zonal model was to help establish process parameters, rather than details of the micro processes and mixing within each zone (addressed in Stage 2).
 - Stage 2 used a porous-media CFD approach to explore multi-dimensional mixing of injected oxygen & steam into the porous bed
- 15 cases involving variations in amounts and positions of steam and oxygen injection were investigated. Gasifier exit results are presented for cases 8 and 9. Modeling effort is complete. Models will be adjusted by REI for scale up based on bench-scale gasification results

Exit Conditions from Gasifier Model Results

	Case 8	Case 9
Temperature, °C	456	466
H2, % vol wet	16.66	15.06
CO, % vol wet	20.87	18.12
CO2, % vol wet	6.29	7.16
H2O, % vol wet	55.79	59.40
CH4, % vol wet	0.154	0.052
Gas Mass Flow, kg/s	0.00885	0.00974
Density, kg/m ³	0.957	0.954
Volume Flow, actual m ³ /s	0.009247	0.01021
Char Mass Flow, kg/s	5.99e-5	4.55e-5
Carbon Content, %	42.2	32.0

Work in Progress

- Based on the kinetic studies and modeling efforts, a design of the 25 lb/h modular gasifier has been carried out. The design is highly flexible to achieve the desired syngas composition, guided by the model.
- Discussions were initiated with experts at Unitel and TR Miles, inc, and CUNY for assistance with critical components, in particular, for gasifier start up, selection of coal feeder, char withdrawal, materials of construction, temperature measurements within gasifier. Balance of plant components have been determined, they are fairly straight forward and will be obtained from commercial vendors
- Gasifier construction task is about 4 months behind because of move of our laboratory from RTP to Birmingham, Alabama. A site has now been established at the new location.
- Aspen simulations and preliminary TEA efforts have been carried out. TEA indicates reduced cost due to standard factory components. Potential sale of char byproduct can make small distributed systems economical

Conclusions and Future Work

- Modeling efforts and flexible input capability for oxygen and steam have confirmed the ability to manipulate temperature distribution within gasifier and achieve the desired syngas composition, char composition, tar, and ammonia levels.
- Gasifier design and construction will be completed and testing should begin in late 2019.

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government (DOE-NETL, Office of Fossil Energy). Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Thanks for Listening! Questions?

Solving the world's hardest problems.