Capillary-driven Condensation for Heat Transfer Enhancement in Steam Power Plants Project ID: DE-FE0031677 Yajing Zhao¹ (Presenter), Samuel Cruz¹, Kyle Wilke¹, Thomas Lestina², Evelyn N. Wang¹ (PI) [1] Department of Mechanical Engineering, MIT [2] Heat Transfer Research Inc.

INTRO/NEED

APPROACH

- Steam cycles produce 90% of electrical power in the U.S.¹
- Power plants are responsible for the largest amount of water withdrawn from U.S. water bodies²
- Conventional condenser surfaces form thick liquid films, hindering heat transfer
- Capillary-enhanced condensation in high thermal ulletconductivity wicking structures

- High Thermal Conductivity— High Porosity Wick
- Steam condenses inside the wick
- Wick confines liquid film ullet
 - Membrane helps generate capillary pressure $P_{cap} \sim \frac{2\sigma}{r}$

Condenser efficiency 1, power production ↑, water consumption ↓

Capillary pressure drives the \bullet condensate flow out of the wick

DESIGN CONSIDERATIONS

MATERIALS SEARCH RESULTS

	× 10 ⁻⁶	-			
•	Hydrophobic membrane: hydrophobicity (contact	tion		Commercial Production	Lab-scale Fabrication
E L	angle), pore size, thickness, durability Effective permeability: $\overline{K} = \frac{MA_{\text{total}}\phi}{RTt_{\text{membrane}}} \left(\frac{1}{3}d_p\left(\frac{8RT}{\pi M}\right)^{\frac{1}{2}} + \overline{P}\frac{d_p^2}{32\mu_v}\right)^{\frac{1}{2}}$	regime 10 15 [μm]	Hydrophobic Membrane	PTFE/PP/PVDF membranes: contact angle > 90°, pore size 10^{-1} -10 µm, thickness 10-10 ² µm, widely used in membrane distillation industry.	electrospun nanofiber membranes, nanoparticle- incorporated membranes, multi- layer composite membranes, etc.: well-controlled pore size and pore size distribution.
	permeability, thickness Flooding criterion: $P_L - P_{atm} = \Delta P = \frac{\dot{m}'' L^2 \mu}{2\rho \kappa_{wick} t_{wick}}$ Heat transfer through wicks: $q'' = \frac{k_{eff}}{t_{wick}} \Delta T_{wick}$	=P _{atm} e gend: Membrane Condensate Wick	Hydrophilic Wick	nickel/copper/stainless steel sintered powder wicks/metal foams: thickness $\geq 10\mu$ m, permeability $\leq 10^{-9}$ m ² , widely used in heat pipe industry.	microgroove wick structures, micro/nanostructured copper foams, composite wick structures, etc.: well-controlled geometry, κ_{wick} 1, k_{eff} 1.

MODELING RESULTS

BENEFITS AND FUTURE WORK

Parametric sweeps of the total temperature drop across the wick and membrane as a function of membrane pore diameter and of wick permeability at a constant heat flux 150 kW/m².

• $r_{\rm p} = r_{\rm p, optimal}, \kappa_{\rm wick} \uparrow, k_{\rm eff} \uparrow, \Delta T_{\rm total, min} \downarrow,$ HTC ↑.

Economic evaluation of the currently designed condenser versus a plain condenser for a typical 950 MW nuclear fired power plant³ shows increased power output of 13.80 MW, which corresponds to a capital value of \$27.6 million dollars.

Future work entails:

- Refine model to guide surface design to achieve optimal heat transfer
- Characterize and fabricate condenser surfaces (hydrophilic wicks + hydrophobic membranes)
- Experimental demonstration of heat transfer enhancement both in lab and in industrial conditions.

ACKNOWLEDGEMENTS

We gratefully acknowledge funding support from the National Energy Technology Laboratory (NETL) of the U.S. Department of Energy with Richard Dunst as project manager.

REFERENCES

[1] Wiser, W. Energy resources: occurrence, production, conversion, use (2000) [2] Dieter, C.A., et al., Estimated use of water in the United States in 2015 (2018)

[3] Webb, R., Enhanced condenser tube designs improve plant performance.

2019 Crosscutting Annual Review Meeting Pittsburgh April 9th, 2019, Pennsylvania

Power Magazine (2010)

