Influence of surface chemistry of fluorite-type cathode materials on oxygen reduction reaction

<u>Clement Nicollet</u>, Harry Tuller Massachusetts Institute of Technology NETL award DE-FE0031668

Massachusetts Institute of Technology

Solid Oxide Fuel Cells

Chromium poisoning of SOFC cathodes

Chromium from interconnect: Deposition onto cathode active sites limitation of oxygen surface exchange reaction Degradation of performance

Cr-poisoning In Sr-containing cathodes

Surface Exchange coefficient k_{chem} of La_{0.6}Sr_{0.4}CoO₃ under Cr source

Main degradation in humidified air and due formation of to SrCrO₄

4

Sr-free cathode material – Pr-Ce oxides

Sr-free cathode material – Pr-Ce oxides

Praseodymium doped ceria

Praseodymium oxide Pr₆O₁₁

Surface resistance similar to perovskites

Pr₆O₁₁ infiltrated into GDC cathode (on commercial half-cell) Commercial single cell w/ LSC cathode (same anode/electrolyte)

Nicollet et al., Int. J. Hydrogen Energy 41 (34), 15538-15544 (2016)

Performance comparable to state of the art cathode materials

6

Project description and objectives

Cr poisoning of Pr-doped ceria electrodes

Exsolved La_2O_3 particles \rightarrow Getter Cr poisoning

to withstand long term operation

Self-Cleaning Material

Study of the influence of Chromium on PCO surface exchange rate

Measurement of surface exchange coefficient – Conductivity relaxation

Measurement of surface exchange coefficient – Conductivity relaxation

When $I << K_{Chem}/D$, the transport is limited by the surface exchange

Porous sample \rightarrow Short diffusion length \rightarrow surface exchange limited

$$g(t) = \frac{\sigma(t) - \sigma(0)}{\sigma_{\infty} - \sigma(0)} = 1 - \exp\left[-\frac{t}{\tau_{r}}\right]$$
porosity
$$\tau_{r} = \frac{(1 - V_{v})}{S_{v}k_{chem}}$$
Surface area

Ganeshananthan et al. Journal of The Electrochemical Society, 153 12 A2181-A2187 2006

Conductivity relaxation on PCO

Surface exchange coefficient of PCO

Before chromium poisoning experiments

Egger et al., Solid State Ionics 225 (2012) 55–60 Chen & Zhao International Journal of Hydrogen Energy 36 (2011) 6948-6956

Chromium poisoning study - strategy

Chromium poisoning on PCO

Conductivity transient after Cr poisoning increment (calcination at 450 °C) Measurement at 400 °C

Chromium poisoning on PCO

Fitting conductivity transients after poisoning

$$g(t) = A_1 \left(1 - e^{-t/\tau_1} \right) + A_2 \left(1 - e^{-t/\tau_2} \right)$$

A₁: fraction of the pristine surface τ_1 : related to k_{chem} of the pristine surface A₂: fraction of the poisoned surface τ_2 : related to k_{chem} of the poisoned surface

Masking or reactivity?

Project description and objectives

→Source of scavenging elements to withstand long term operation What is the influence of La_2O_3 prior to Cr poisoning?

Surface modification: infiltration

Influence of La₂O₃ (and other RE oxides) in realistic porous microstructures

Preparation of Porous PCO bars

Pressing + sintering

Surface modification: Oxygen surface exchange rate

Conclusions & perspectives

- First measurements of Cr poisoning on PCO
- Degradation of k_{chem} even after low temperature annealing
- La_2O_3 strongly enhances k_{chem} of PCO

Perspectives

- Study to be repeated with $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ (for reference)
- Study of Cr poisoning on Pr₆O₁₁
- Exsolution of scavenging element (La) to heal Cr poisoning

Thank you for your attention

Acknowledments: Tamar Kadosh award DE-FE0031668 (Joseph Stoffa)