Development & Validation of Low-Cost, Highly-Durable, Spinel-Based Materials for SOFC Cathode-Side Contact

Jiahong Zhu

Department of Mechanical Engineering

Tennessee Technological University (TTU)

20th Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting April 29-May 1, 2019

Outline

- Introduction and Project Objectives
- Effect of Spinel Compositions on the Electrical Conductivity and CTE
- Performance Evaluation of the Sintered Spinel Contact Thermally Converted from Metallic Precursors
 Area Specific Resistance (ASR), Chemical Compatibility, etc.
- Reactive Sintering of Dense (Mn,Co)₃O₄ Coatings
- Co-sintering of Spinel-Based Coating/Contact Dual-Layer Structure
- Concluding Remarks
- Acknowledgments

Need of Contacting for Different SOFC Stacks

 In stacks with anode-supported cells (ASC-SOFC), the contact is required to minimize the cathode-interconnect interfacial resistance.

Cathode-Interconnect Interface in ASC SOFC Stacks

 In all-ceramic stacks, the contact is required to minimize the interfacial resistance between the current collector plate and cathode end plate.

Contact Material Requirements

- Requirements for contact materials in ASC-SOFC and all-ceramic SOFC stacks are generally similar, including:
 - Low material/processing cost
 - High electrical conductivity
 - Match in coefficient of thermal expansion (CTE)
 - Adequate stability and compatibility
 - Appropriate sinterability
 - Good bonding strength with adjacent stack components
 - Absence of volatile species

Cathode-Current Collector Interface in All-Ceramic SOFC Stacks

 Additionally, a reasonable porosity level in the cathodeside contact is needed in ASC stacks for maximizing the triple phase boundaries for cathodic reaction.

Different Contact Materials

- While various materials for ferritic alloy-cathode contacting have been studied, most developments have focused on (La,Sr)(Mn,Co,Fe,Ni,Cu)O₃:
 - Difficulty in balancing the electrical conductivity, CTE, sinterability and chemical compatibility of the perovskites.

Material	Example	CTE (×10 ⁻⁶ /K)	Conductivity	Main Concern	
Туре		(20–800°C)	(S·cm ⁻¹ , 800°C)		
Noble Metal	Pt	10.0	Metallic	High Cost	
	Pd	12.3	Metallic	High Cost	
	Au	16.6	Metallic	High Cost	
	Ag	22.0	Metallic	Volatility	
Perovskite	(La _{0.8} Sr _{0.2}) CoO _{3-δ}	19.2 (20-1000°C)	1400	CTE Mismatch	
	(La _{0.8} Sr _{0.2})(Co _{0.5} Fe _{0.5})O _{3-δ}	18.3 (20-1000°C)	340	CTE Mismatch	
	(La _{0.8} Sr _{0.2})(Co _{0.5} Mn _{0.5})O _{3-δ}	15.0 (20-1000°C)	190	CTE Mismatch	
	(La _{0.8} Sr _{0.2})MnO ₃	11.7 (20-1000°C)	170	Sinterability	
	LaMn _{0.45} Co _{0.35} Cu _{0.2} O ₃	13.9	80	Mn/Cu Migration	
Spinel	MnCo ₂ O ₄	9.7-14.4	24- 89	Sinterability	
	Mn _{1.5} Co _{1.5} O ₄	10.6-11.6	55-68	Sinterability	
	NiCo ₂ O ₄	12.1	0.93	Sinterability	
	NiFe ₂ O ₄	11.8	0.3, 6.8, 17.1	Sinterability	
	Ni _{0.85} Fe _{2.15} O ₄	12.1	15.4	Sinterability	

Why (Ni,Fe)₃O₄- and (Mn,Co)₃O₄-Based Spinels as Contact Material?

 Conductive spinels based on (Ni,Fe)₃O₄ and (Mn,Co)₃O₄, which have been extensively evaluated as interconnect coating, are also promising for contact application, based on electrical conductivity, CTE, chemical compatibility, etc.

Material Type	Example	CTE (×10 ⁻⁶ /K) (20–800°C)	Conductivity (S·cm ⁻¹ , 800°C)	Main Concern
Spinel	MnCo ₂ O ₄	9.7-14.4	24- 89	Sinterability
	Mn _{1.5} Co _{1.5} O ₄	10.6-11.6	55-68	<u>Sinterability</u>
	NiCo ₂ O ₄	12.1	0.93	Sinterability
	NiFe ₂ O ₄	11.8	0.3, 6.8, 17.1	Sinterability
	Ni _{0.85} Fe _{2.15} O ₄	12.1	15.4	Sinterability

Unfortunately, the sinterability of spinels is very poor (typically ≥1000°C), if metal oxides are used as the starting powders.

 Employment of metallic powders (instead of oxide powders) as the starting precursor will lower the sintering temperature via a reactive sintering mechanism called environmentally-assisted reactive sintering (EARS).

Utilization of EARS for Reduced-Temperature Sintering of Spinel-Based Contact

 In EARS, with the participation of oxygen from air, the metallic powder precursor will be oxidized and reacted to form a wellsintered spinel at a reduced temperature (e.g., 900°C):

(b): $AO_x + 2BO_y + (2 - \frac{1}{2}x - y)O_2(g) = AB_2O_4 + \Delta H_1$

(c): $A + 2BO_y + (2-y)O_2(g) = AB_2O_4 + \Delta H_2$

(d) & (e): $A + 2B + 2O_2(g) = AB_2O_4 + \Delta H_3$

 $\Delta H_3 > \Delta H_2 >> \Delta H_1$

- Enhanced sintering via EARS is likely due to:
 - Heat released during the reaction;
 - Volume expansion upon conversion of metal to metal oxide;
 - Formation of highly-active surface nano-oxides;
 - Shorter diffusion distance when a pre-alloyed powder is employed.
 Zhu et al., IJHE, 2018

(a) with a spinel (S) powder

(b) with a mixture of metal oxides

(c) with metal and oxide powders

(d) With two metal powders

(e) With a pre-alloyed powder

Project Objectives

- **Optimization of the multi-component alloy precursor** composition as contact material. The alloy compositions will be optimized via composition screening in the $(Ni,Fe,Co,X)_3O_4$ and (Mn,Co,X)₃O₄ system, alloy design using physical metallurgy principles, and cost considerations. The desired alloy powders will be manufactured & characterized in detail.
- **Demonstration/validation of the contact layer performance in** relevant SOFC stack environments. Long-term ASR behavior and in-stack performance of the contact layer in relevant stack operating environments, its microstructure, chemical compatibility & Cr-retaining capability will be evaluated.
- Further cost reduction and commercialization assessment. \mathbf{O} Approaches to further reducing the stack cost will be explored, such as co-sintering of the interconnect coating and contact layer. Cost analysis and scale-up assessment will be conducted for potential commercialization. 8

Phase Equilibria in Co₃O₄-Fe₂O₃-NiO System

- While the phase equilibria in ternary Fe-Ni-Co system have been well documented, this is not the case for the Fe-Ni-Co-O system.
- By combining the binary system data, thermodynamic assessment, & experimental investigation, we have determined the Fe₂O₃-NiO-Co₃O₄ phase diagram at 800°C in air.
- Of particular interest to our contact material development are the low-Co spinel compositions near the spinel phase boundaries.

Spinel Compositional Optimization in (Ni,Fe,Co,X)₃O₄

- The pellets of various (Ni,Fe,Co,X)₃O₄ spinel compositions were prepared for electrical conductivity and CTE measurements.
- The Fe/Ni/Co ratio in (Ni,Fe,Co)₃O₄ was varied, while keeping the overall composition close to the phase boundaries.
- Additional microalloying elements (X = X', X", etc. transitional metal and/or a reactive element) were doped into (Ni,Fe,Co)₃O₄ to further improve its properties.

Selected Compositions Evaluated in Our Study

Sample #	Composition
1	Ni _{.84} Fe _{2.16} O ₄
2	Ni.69C0.15Fe2.16O4
3	Ni _{.72} Co _{.15} Fe _{2.13} O ₄
4	Ni.60CO.30Fe2.10O4
5	Ni _{.48} Co _{.45} Fe _{2.07} O ₄
6	Ni _{.84} Co _{.27} Fe _{1.89} O ₄
7	Ni.675C0.48Fe1.845O4
8	Ni.81X'.03Fe2.16O4
9	Ni.66X'.03Co.15Fe2.16O4
10	Ni _{.81} X".03Fe _{2.16} O ₄

10

Spinel Compositional Optimizationin in (Ni,Fe,Co,X)₃O₄: Electrical Conductivity and CTE

- Regardless of the Co level in the spinel, its Fe level dictated the electrical conductivity, which increased as it became more Fe-excess.
- A combination of Co and X' doping was beneficial in further increasing the spinel conductivity.
- An even higher electrical conductivity was observed in the X''-doped spinel Ni_{0.81}X"_{0.03}Fe_{2.16}O₄.

• Fe/Ni/Co ratio and alloying addition had little effect on CTE (~12x10⁻⁶/°C).

Phase Equilibria in Mn₂O₃-Co₃O₄ System

Phase Diagram of the Co-Mn System

Some controversies exist for the Mn_2O_3 - Co_3O_4 system.

Two most important compositions in the $(Mn,Co)_3O_4$ spinel system are:

✓ MnCo₂O₄: CS at both 800 and 20°C;

Spinel Compositional Optimization in (Mn,Co,X)₃O₄: Electrical Conductivity of Mn_zCo_{3-z}O₄

- A range of electrical conductivity and CTE has been reported for both $MnCo_2O_4$ and $Mn_{1.5}Co_{1.5}O_4$. Some data are contradictory to each other.
- As Mn in $Mn_zCo_{3-z}O_4$ increased from z = 1.0 (i.e., $MnCo_2O_4$) to z = 1.5 (i.e., $Mn_{1.5}Co_{1.5}O_4$), the electrical conductivity of the spinel decreased.
- A change in activation energy for electrical conduction was observed for Mn_{1.5}Co_{1.5}O₄, likely due to the phase transition in this spinel.

Spinel Compositional Optimization in $(Mn,Co,X)_3O_4$: Average CTE of $Mn_zCo_{3-z}O_4$

- As Mn in Mn_zCo_{3-z}O₄ increased from z = 1.0 (i.e., MnCo₂O₄) to z = 1.5 (i.e., Mn_{1.5}Co_{1.5}O₄), the CTE of the spinel decreased.
- A change in the slope of thermal expansion curve for Mn_{1.5}Co_{1.5}O₄ is related to the phase transition in this spinel.
- The spinel Mn_{1.23}Co_{1.77}O₄ will have a CTE of 12.0x10⁻⁶/°C and a conductivity of 110 S/cm at 800°C likely a better coating choice.

Gas Atomization of the Optimization Alloys

- Based on the phase constitution, electrical conductivity, and CTE, a number of Fe-Ni-Co-X and Mn-Co-X precursor alloy compositions were selected for the powder preparation.
- The powders with the desired composition and particle size were manufactured using a semiindustrial gas atomizer.

Gas Atomization System

Chemical analysis of the collected powders was conducted at Dirats
 Lab – a close match with the targeted compositions was achieved.

TTU is currently in process of acquiring a lab-scale gas atomizer for alloy powder making under a DoD DURIP project.

Area-Specific Resistance (ASR) Measurement

- A number of test cells were constructed, with the spinelforming contact precursor layer sandwiched between the ferritic alloy [AISI 441, Crofer 22 APU, or (Mn,Co)₃O₄ (MCO)-coated ZMG230G10] and the LSM cathode.
- The test cells were spring-loaded and the ASR change during either isothermal or cyclic exposure at 800°C in air was monitored using a special 6-cell test rig.

Schematic of the ASR Test Cell and Test Configuration

Cell ASR with an Fe-Ni-Co Based Alloy Contact Precursor

- After initial sintering at 900°C for 2 h, the ASR for AISI 441/contact /LSM cell with the Fe-Ni-Co-X alloy precursor was very stable, with an ASR of about 15-17 mΩ·cm² during 5000-h isothermal exposure at 800°C in air.
- The contact layer effectively blocked outward diffusion of Cr from the un-coated AISI 441.

Cell ASR at 800°C during Isothermal Exposure

Cross-sectional View of the Test Cell with EDS Line-scan Results

Cell ASR with an (Mn,Co,X)₃O₄-Forming Precursor

- After initial sintering at 900°C for 2 h, the MCO-precoated ZMG230G10 /contact/LSM cells with the (Ni,Fe,Co,X)₃O₄/(Mn,Co,X)₃O₄-forming precursors were isothermally exposed at 800°C for 200 h, followed by 10 regular cycles (cooling to 250°C) and 2 deep cycles (cooling to 20°C).
- Compared to the (Ni,Fe,Co,X)₃O₄-forming precursor, the (Mn,Co,X)O₄-forming precursor led to lower, more stable ASR values (about 7-9 mΩ·cm² at 800°C) for the test cells.

Cell ASR vs. Time for Two Different Contact Materials. (Each regular consisting cycle of cooling from 800 to 250°C. re-heating to 800°C, and then holding at 800° C for 10 h, while during each deep cycle, the cell was cooled to room temperature.)

Stable, low ASR was obtained for the MCO-precoated ZMG230G10/contact/LSM cells with the (Mn,Co,X)₃O₄ contact

Expanded View of Cell ASR vs. Time for (Mn,Co,X)₃O₄-Contacted Cells

- Very stable, repeatable ASR data was obtained, due to the excellent chemical compatibility between the different components;
- The negligible effect of thermal cycling on the ASR behavior is a result of good matching in CTE between these components.

Cross-sectional View of Tested Cells

- For both cases, a porous contact layer was formed between the coated alloy and the porous cathode. No cracking or delamination near the contact zone was observed.
- Negligible interactions between the contact layer with the MCO coating or the LSM cathode were noticed.

Cross-sectional View of Tested Cell with the (Ni,Fe,Co,X)₃O₄ Contact Cross-sectional View of Tested Cell with the (Mn,Co,X)₃O₄ Contact 20

EARS Processing of Dense MCO Coatings

- Reactive sintering of a dense MCO coating via EARS has been explored and initial results are very encouraging:
 - By controlling the composition/shape/size/size distribution/initial packing density of the metallic precursor powders, a dense spinel layer was obtained after thermal conversion at 900°C for 2 h in air.

Improvement in Quality of TTU's Reactive Sintered MCO Coatings on Crofer 22 APU 12

Comparison of Our Coating with the State-of-the-Art

- Current MCO coating processes typically involve costly equipment, high processing temperatures (> 900°C) and/or a reduction treatment.
- Our EARS process offers a potentially better MCO coating quality.
- The EARS-derived coating does not require a reduction treatment or a sintering temperature higher than 900°C.

¹R. Vaßen et al., Surf. & Coat. Tech., 2016;

²Ghezel-Ayagh, SECA Coal-Based Systems – Final Report, 2014

Co-sintering of Coating/Contact Dual-Layer Structure: Proposed Approach

- To lower the interfacial ASR at the alloy/contact interface, improve the contact quality, and reduce the coating and contact processing cost, co-sintering of the coating and the contact layer during initial stack firing/operation is also explored, utilizing two different metallic precursors:
 - Two spinel-forming precursors (Type #1 for the contact layer and Type #2 – for the dense MCO coating) will be employed;
 - Reactive co-sintering in air at a sintering temperature of 900°C will be utilized for simultaneous formation of the dual-layer structure.

Initial Results on Co-sintering of Coating/Contact Layers

- After screen printing the spinel-forming coating/contact precursor layers on Crofer 22 APU, the alloy/coating/contact /LSM cell was co-sintering in air at 900°C for 2 h.
- A highly dense MCO coating layer and a porous contact layer were obtained, both of which were well sintered.
- Our co-sintered dual-layer structure led to better ASR performance than the non-co-sintered ones.

Cost Analysis – Simplified Synthesis of Contact Layer and Interconnect Coating for ASC-SOFC Stacks

Concluding Remarks

- Several compositions in the (Ni,Fe,Co,X)₃O₄ and (Mn,Co,X)₃O₄ systems have been identified for SOFC contacting applications, based on considerations of phase constitution, electrical conductivity, CTE, etc.
- A number of Ni-Fe-Co and Mn-Co based precursor alloy powders have been prepared via gas atomization.
- Low-cost, EARS-processed (Ni,Fe,Co)₃O₄- and (Mn,Co)₃O₄-based contact layers with promising ASR performance have been successfully demonstrated.
- By controlling the metallic precursor powder composition, size, size distribution, and initial powder packing density, a dense MCO coating have been synthesized for protecting the interconnect or current collector alloys.
- Co-sintering of a dual-layer structure with a dense spinel layer as coating and a porous layer as contact can be achieved by utilizing two tailored metallic precursors.

Acknowledgments

- U. S. Department of Energy National Energy Technology Laboratory, Solid Oxide Fuel Cell Prototype System Testing and Core Technology Development Program, Award No. DE-FE0031187; Project Manager: Dr. Patcharin Burke
- Allen Yu, Joseph Simpson, David Chesson, and Brian Bates, TTU
- Dr. Hossein Ghezel-Ayagh, FuelCell Energy, Inc.
- Dr. John Pietras and his team at Saint Gobain

Project Milestones

Milostono	Planned	Planned	Actual		
	Start Date	Completion	Completion	Verification Method	Status
The/Description		Date	Date		
Revised PMP	10/10/2017	10/30/2017	10/23/2017	PMP file	Completed
Kickoff Meeting	10/30/2017	12/29/2017	11/29/2017	Presentation file	Completed
Compositional				Optimal Fe/Ni/Co and	
optimization of	11/01/2017		06/28/2018	other alloy additions	Completed
Precursor alloy		06/30/2018		are identified.	-
Preparation of the				Atomization of one	
optimized alloy	11/15/2017	09/31/2018	09/20/2018	alloy powder is	Completed
powder				completed.	
Demonstration of				The ASR stability is	
long-term cell ASR	01/01/2018	06/30/2019	02/20/2019	demonstrated	Completed
stability with the				successfully for	
new contact				about 5,000 h.	
Demonstration of				Stack performance	
stack performance	04/02/2018	07/31/2019		stability testing for \geq	
stability with 1-cell				1,000 h is completed	In progress
stack testing				at industrial site.	
Cost analysis and				Cost analysis and	
commercialization	07/01/2019	09/31/2019		scale-up assessment	Just started
feasibility				are completed.	