
Highly-Active and Contaminant-Tolerant Cathodes for Durable Solid Oxide Fuel Cells

DOE Project Manager: Joseph Stoffa

PI: Meilin Liu

Team: Yu Chen, Nicholas Kane, Kai Pei, Yucun Zhou

Georgia Institute of Technology May 1, 2019

2019 DOE Hydrogen and Fuel Cells Program Review

FE21

This presentation does not contain any proprietary, confidential, or otherwise restricted information

1

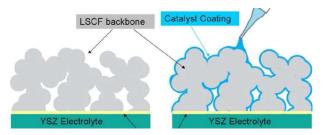
Outline

- Project Information
 - Motivation, objectives, technical Approaches
- Accomplishments
 - Characterized electrochemical behavior of LSCF cathodes exposed to various contaminates
 - **Fabricated** *catalyst-coated electrodes* with well controlled composition, structure, and morphology
 - Probed surface species of electrodes using in operando Raman spectroscopy
 - Developed efficient catalysts for enhancing ORR activity and durability
- Summary
- Acknowledgement

U.S. DEPARTMENT OF ENERGY

Motivation

- Cathodic polarization causes significant energy loss.
- The state-of-the-art SOFC cathode materials are susceptible to degradation due to inherent instability and contaminants poisoning.
- Cathode durability is critical to long-term reliable SOFC performance for commercial deployment.
- Mitigating the issues by catalyst coatings will reduce the cost of SOFCs and help to meet both cost and performance goals.


Contaminant-tolerant electrodes

3

Strategy to Durability Limit the sources of contaminants Reduce the exposure to contaminants: use of getters The last defense: contaminant-resistant electrode Co2 Cr-containing interconnect intercon

Surface Modification

➤ To develop **a conformal catalyst coating** that may (1) suppress Sr segregation or enrichment^{1,2} and (2) enhance the tolerance to contaminants

- ➤ The catalysts must be inherently more stable, electrocatalytically active, yet less sensitive to contaminants
 - 1. EES, 2011, 4, 2249; 2. AEM, 2013, 3, 1149; EES, 2014, 7,

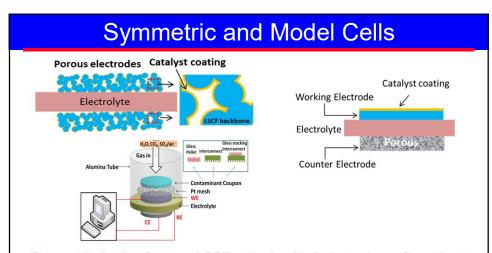
5

Project Objectives

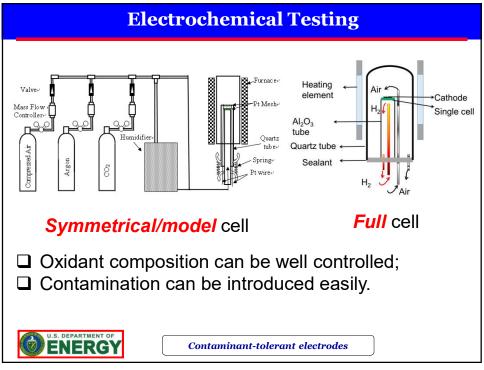
- □ To characterize the **electrochemical behavior** of LSCF exposed to contaminants under realistic operating conditions (ROC);
- To probe the surface species/phases of LSCF cathodes exposed to contaminants under ROC using *in situ* and *ex situ* measurements performed on specially-designed cathodes;
- To unravel the degradation mechanism of LSCF cathodes by correlating the changes in performance with the surface chemistry, microstructure, and morphology under ROC;
- To establish **scientific basis for rational design** of new catalysts of high tolerance to contaminants;
- To validate the **long term stability of modified LSCF** cathodes in commercially available cells under ROC.

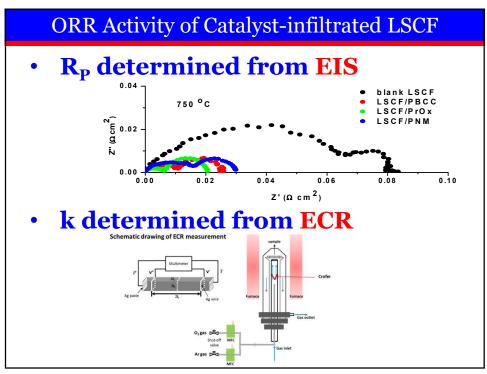
Highly Active and Durable SOFC Cathodes

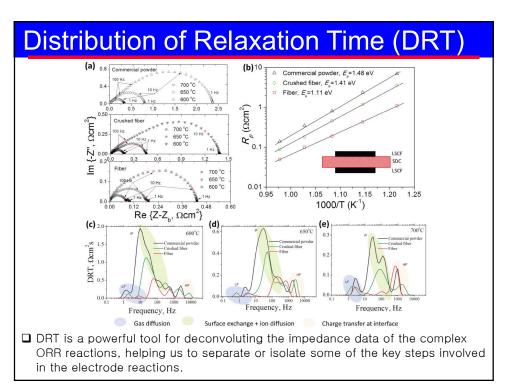
Tasks and Schedule

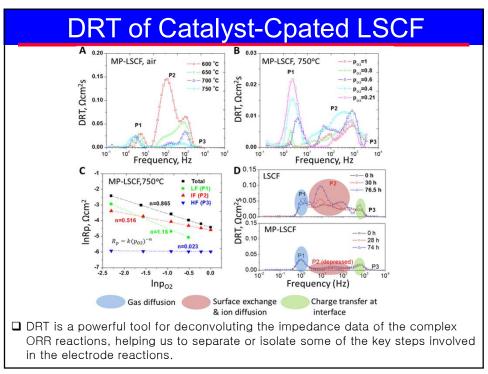

- Task 1: Project Management and Planning
- Task 2: Charactering the EC Behavior of Catalyst-Coated LSCF under Realistic Conditions
- Task 3: Understanding the Mechanism of Contamination Tolerance
- Task 4: Development of Low-cost and Applicable Deposition Techniques for Cathode
- Task 5: Development of Catalyst Coating on Porous Cathodes of Large Commercial Cells
- Task 6: Verification of Catalyst Coating in a Subscale Stacks of Fuel Cell Energy

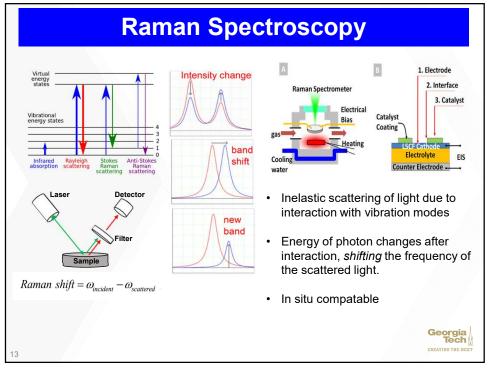
Task	FY2017	FY2018				FY2019		
	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
1	ļ							
2			\rightarrow					
3					\longrightarrow			
4							\rightarrow	
5								\rightarrow
6								\longrightarrow

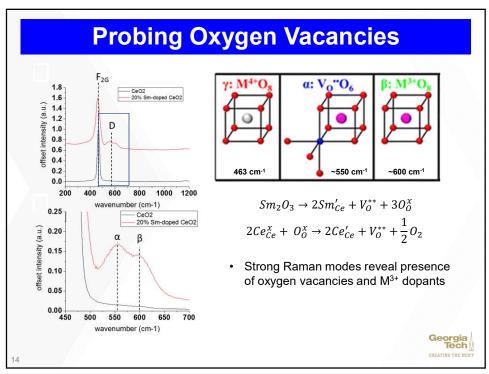



Highly Active and Durable SOFC Cathodes

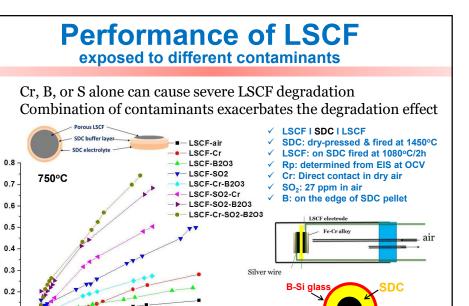

7




- Symmetrical cells of porous LSCF cathode with 2-electrode configuration to determine the sensitivity of cathode performance to the type and concentration of contaminants (S, B and Cr) under various testing conditions
- Model Cells with thin-film dense LSCF electrode to facilitate the interface analysis and correlate the degradation mechanism with the geometric factors, revealing the major path of surface reaction on the cathodes



Accomplishments and Progress


- Characterized electrochemical behavior of LSCF cathodes exposed to contaminates (such as Cr, SO₂, CO₂ and B) under ROC;
- Identified some efficient catalysts for enhancing ORR activity and durability;
- Fabricated model cells with a thin-film LSCF electrode and characterized the model cells (w/o catalyst) in different contaminants;
- Probed surface species of LSCF using in operando SERS; and
- Developed the low-cost and applicable deposition techniques for large cathodes (~1 inch diameter).

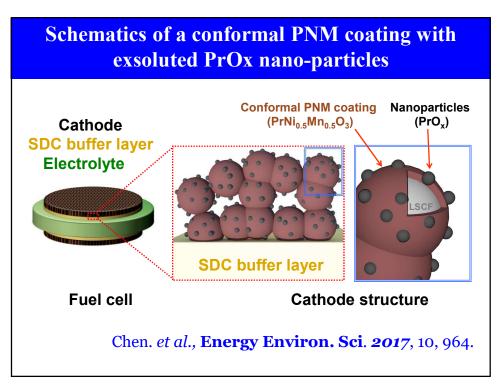
15

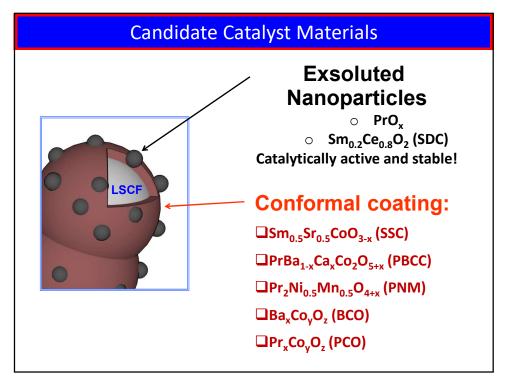
15

Accomplishments and Progress

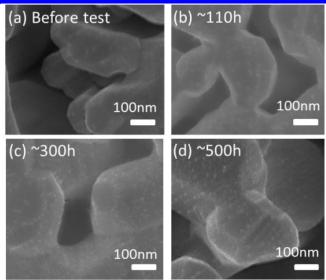
- Characterized electrochemical behavior of LSCF cathodes exposed to contaminates (such as Cr, SO₂, CO₂ and B) under ROC;
- Identified some efficient catalysts for enhancing ORR activity and durability;
- Fabricated model cells with a thin-film LSCF electrode and characterized the model cells (w/o catalyst) in different contaminants;
- Probed surface species of LSCF using in operando SERS; and
- Developed the low-cost and applicable deposition techniques for large cathodes (~1 inch diameter).

30 40


Rp of LSCF exposed to different contaminants

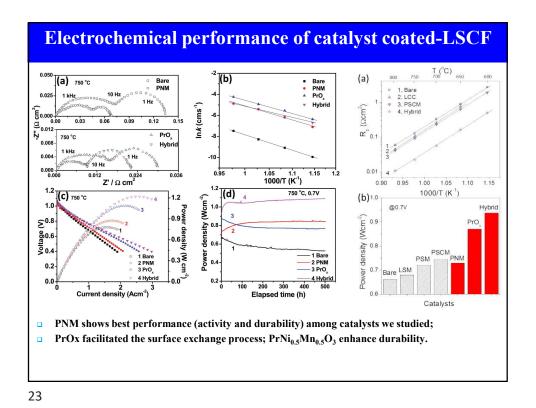

Accomplishments and Progress

- Characterized electrochemical behavior of LSCF cathodes exposed to contaminates (such as Cr, SO₂, CO₂ and B) under ROC:
- Identified some efficient catalysts for enhancing ORR activity and durability;
- Fabricated model cells with a thin-film LSCF electrode and characterized the model cells (w/o catalyst) in different contaminants;
- Probed surface species of LSCF using in operando SERS; and
- Developed the low-cost and applicable deposition techniques for large cathodes (~1 inch diameter).


18

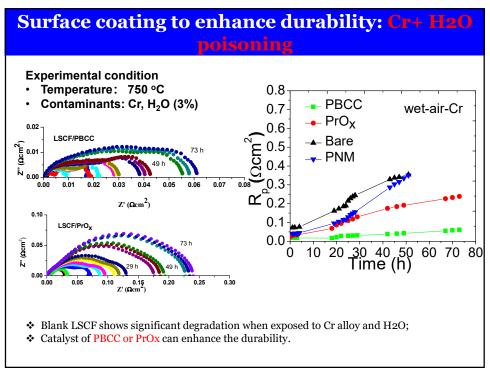
LSCE

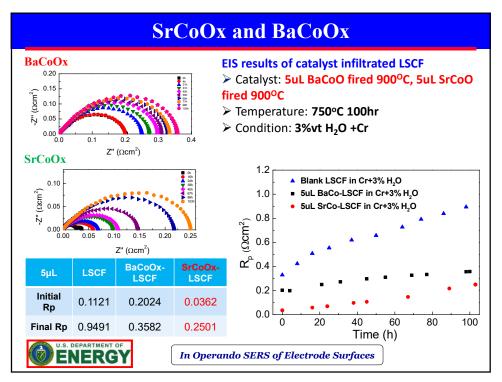
Morphology/composition evolution of porous LSCF

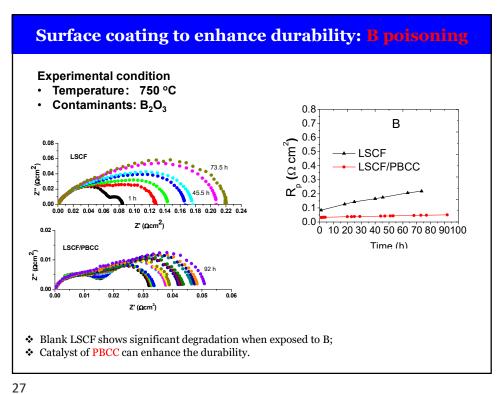

More PrOx particles exsolved overtime, leading to performance enhancement.

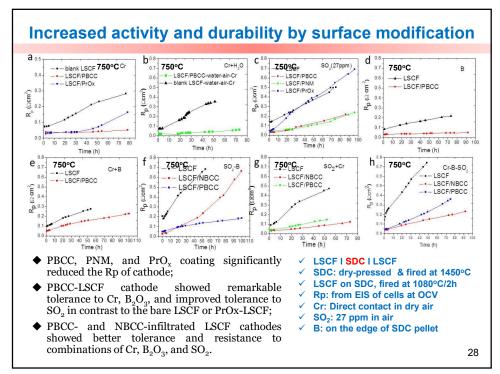
21

Micro-analysis of PNM-LSCF Prox #PrNi_{0.5}Mn_{0.5}O₃ [001] Prox | Prox #PrNi_{0.5}Mn_{0.5}O₃ | Prox

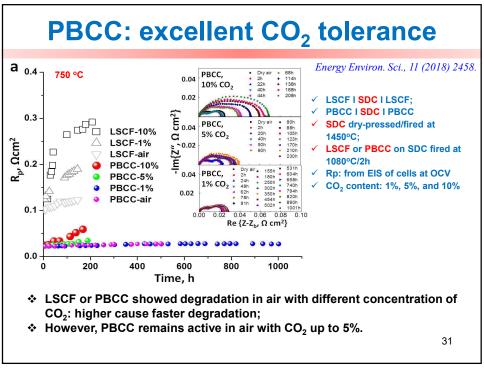

- particles on a conformal PNM coating deposited on an LSCF grain. The insets are the FFT patterns from the nanoparticles (point 1) and the conformal PNM coatings (point 2): and the EELS spectra from point 1 and 2, suggesting that the nanoparticles are mainly PrOx (point 1) while the conformal coating is PNM (point 2).
- PNM is a composite with possible composition of PrO_x and PrNi_{0.5}Mn_{0.5}O₃;
- LSCF was covered by a conformal coating and exsoluted nanoparticles;

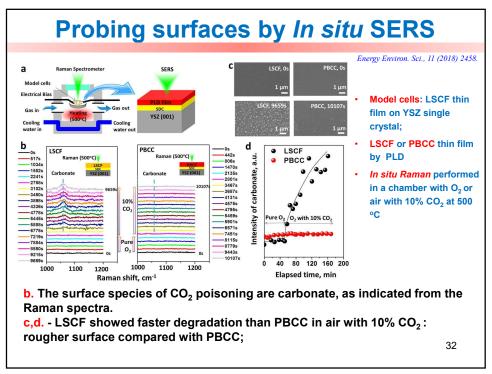

Energy Environ. Sci. 2017, 10, 964.

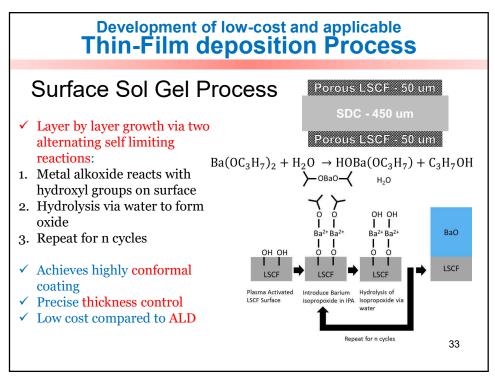


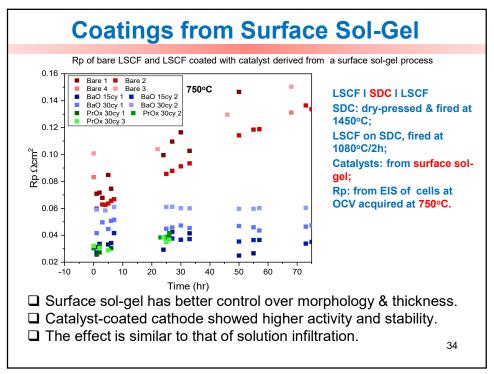

Surface coating to enhance durability: Cr poisoning **Experimental condition** Temperature: 750 °C 0.4 Contaminants: Cr 0.02 Bare 0.3 - PBCC (DCM 0.01 78 h PrOx $R_{_{\mathrm{D}}}$ ($\Omega\mathrm{cm}^2$) 0.2 0.00 0.03 0.05 0.01 0.02 Z' (Ωcm²) E 0.02 0.0 40 -10 10 20 50 30 70 60 Time (h) 0.10 0.12 0.14 0.16 0.08 * Blank LSCF shows significant degradation when exposed to Cr

Catalyst of PBCC or PrOx can enhance the durability.

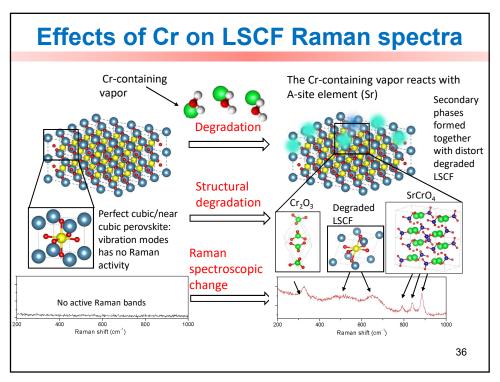

Accomplishments and Progress

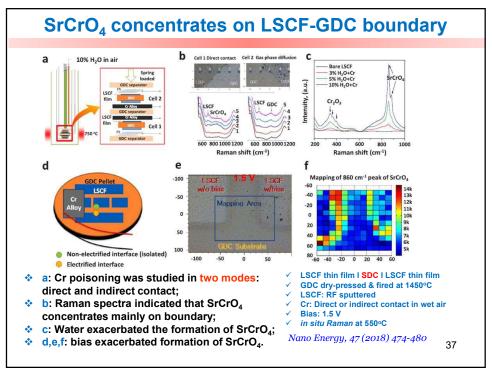

- Characterized electrochemical behavior of LSCF cathodes exposed to contaminates (such as Cr, SO₂, CO₂ and B) under ROC;
- Identified some efficient catalysts for enhancing ORR activity and durability;
- Fabricated model cells with a thin-film LSCF electrode and characterized the model cells (w/o catalyst) in different contaminants;
- Probed surface species of LSCF using in operando SERS; and
- Developed the low-cost and applicable deposition techniques for large cathodes (~1 inch diameter).

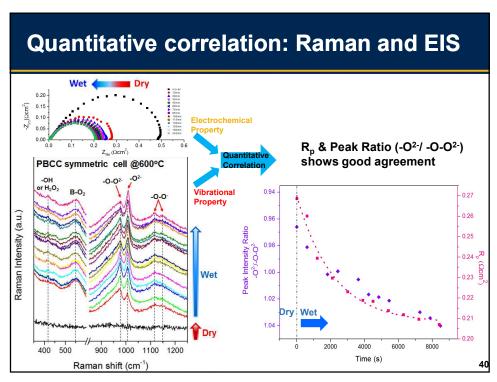

29


29

Thin-film electrodes **Catalyst coatings** As deposited LSCF Thin film LSCF SDC **Annealed LSCF Porous LSCF** LSCF thin film | SDC | porous LSCF SDC: dry-pressed & fired at 1450°C Porous LSCF on SDC fired at 1080°C/2h Rp determined from EIS at OCV 0 Rp of porous the LSCF was negligible 50 100 150 200 SO₂: 27 ppm in air Time(h) Thin film electrodes have been PBCC(S_0.27ppm) LSCF(S_0.27ppm) PBCC(S_2.7ppm) LSCF(S_2.7ppm) Air with SO. successfully fabricated by PLD or RF 40 750°C sputtering 35 Annealed LSCF behavior shows very stable up to 60 hrs without additional 20 degradation. 15 Sulfur caused degradation; 10 degradation rate increases with concentration. PBCC Catalyst helps to enhance 20 40 100 durability. Time(h) 30




Accomplishments and Progress


- Characterized electrochemical behavior of LSCF cathodes exposed to contaminates (such as Cr, SO₂, CO₂ and B) under ROC;
- Identified some efficient catalysts for enhancing ORR activity and durability;
- Fabricated model cells with a thin-film LSCF electrode and characterized the model cells (w/o catalyst) in different contaminants;
- Probed surface species of LSCF using in operando SERS; and
- Developed the low-cost and applicable deposition techniques for large cathodes (~1 inch diameter).

35

35

Summary

- ◆ Developed an effective strategy (in operando characterization and computation) for enhancing the tolerance to contaminants poisoning of electrodes
- ◆Identified a number of new catalysts with high electro-catalytic activity and excellent durability for surface modification of electrode, demonstrating better tolerance to H₂O, CO₂, Cr, B₂O₃ and SO₂.

39

Acknowledgement

Discussions with Joseph Stoffa and Arun Bose, and other DOE management team members

DOE Solid Oxide Fuel Cell Program (Grant No. DE-FE0031201)

In Operando SERS of Electrode Surfaces