Improving Ni-based SOFC Anode Resilience and Durability through Secondary Phase Formation

DE-FE0031125 Program Officer: Joe Stoffa

PI: Professor Rob Walker, PI Department of Chemistry and Biochemistry

Co-PI: Professors Stephen Sofie and Roberta Amendola Department of Mechanical and Industrial Engineering

Improving Ni-based SOFC Anode Resilience and Durability through Secondary Phase Formation

DE-FE0031125 Program Officer: Joe Stoffa

DOE Merit Program Review 29 April – 1 May, 2019 Crystal City, VA

2° Phase Formation in Ni-based SOFC Anodes

 $NiO + 8-YSZ + Al_2TiO_5$??

ALT added originally as a sintering aid and to match TCE of NiO and YSZ

2° Phase Formation in Ni-based SOFC Anodes

$$NiO + 8-YSZ + Al_2TiO_5 \longrightarrow ??$$

$NiO + 8YSZ + ALT \longrightarrow NiO + c-YSZ + Zr_5Ti_7O_{24} + NiAl_2O_4$

Findings:

ALT-doped anode materials are stronger

- 2° phases segregate true for mechanically mixed and infiltrated
- ALT is a sintering aid (~90% theoretical density of NiO/YSZ/ALT mixtures)
- 2° phases appear to serve different functions
- Electrochemical degradation is slowed with ALT
- Anodes appear to be less susceptible to carbon accumulation (with CH₄)

Project Objectives

Discoveries are enticing but many questions remain re: strategy's viability...

Project Objectives

Discoveries are enticing but many questions remain re: strategy's viability...

Improving Ni-based SOFC Anode Resilience and Durability through Secondary Phase Formation

- *Refine methods* used to fabricate ALT enhanced anodes into bi-layer anode supports to achieve higher power densities;
- *Compare the effects* of adding ALT mechanically to Ni-YSZ powders prior to anode fabrication with adding ALT through infiltration and co-infiltration of YSZ scaffolds;
- *Test the durability and resilience* of these enhanced anodes to electrochemical and environmental redox cycling and thermal stresses commonly encountered in functioning SOFCs; also test carbon tolerance;
- *Work closely with SOFC manufacturer(s)* to transfer knowledge learned in our laboratories into full sized cell fabrication and testing.

Project Objectives

Discoveries are enticing but many questions remain re: strategy's viability...

Improving Ni-based SOFC Anode Resilience and Durability through Secondary Phase Formation

Today...

- Material consequences of adding ALT to Ni-YSZ cermets
- Mechanical consequences of adding ALT to Ni-YSZ cermets
 - Fracture toughness
 - Hardness
- Electrochemical performance of ALT enhanced Ni-YSZ anodes
- Commercial partnering to independently test anodes with ALT additives

The short version: ALT forms segregated phases with NiO (NiAl₂O₄) and YSZ ($Zr_5Ti_7O_{24}$) with Al₂O₃ nanoparticle decorated Ni following reduction; ALT enhanced anodes have improved hardness and fracture toughness in oxidized and reduced forms; ALT enhanced anodes show two-fold improved resilience to redox cycling *and* improved carbon tolerance with CH₄; NDA with Atrex Energy, Inc.

Some details

- Mechanical strength testing with reduced and oxidized coupons
- All YSZ is Tosoh 8%; NiO from various sources
- Mechanically mixed = ball milling; infiltrated = $Al(NO_3)_3$ and Ti lactate
- Most tests with internally fabricated, electrolyte supported cells
- All electrochemical testing at 800°C with dry fuels

Outcomes (to date)

Amendola, R., McCleary, M. "Effect of Aluminum Titanate Doping on the Mechanical Performance of Solid Oxide Fuel Cell Ni-YSZ Anodes" *Fuel Cell: From Fundamentals to Systems*: **17** 862-868 (2017).

M. M. Welander, C. D. Hunt, M. S. Zacharaiasen, S. W. Sofie, and R. A. Walker "*Operando* Studies of Redox Resilience in ALT Enhanced NiO-YSZ SOFC Anodes" *J. Electrochem. Soc.* **165** (30) F152-F157 (2018).

C. Hunt, M. Zachariasen, D. R. Driscoll, S. W. Sofie, R. A. Walker "Degradation rate quantification of solid oxide fuel cell performance with and without Al_2TiO_5 addition" *Int. J. Hydrogen Energy* **43** (32) 15531-15536 (2018).

McCleary, M., Amendola, R. "Reduction Kinetics of Undoped and Aluminum Titanatne Doped NiO-YSZ Solid Oxide Fuel Cell Anodes" *Ceramics International*: **44** 15557-15564 (2018).

M. M. Welander, M. S. Zachariasen, S. W. Sofie, and R. A. Walker "Enhancing Ni-YSZ Anode Resilience to Environmental Redox Stress with Secondary Phases" *ACS Advanced Energy Materials* **1** (11) 6295-6302 (2018).

D. B. Drasbaek, M. L. Traulsen, R. A. Walker, and P. Holtappels "Operando Raman spectroscopy as a tool to investigate coking behavior of SOFC anode materials" *Fuel Cells* in press (2019).

M. M. Welander, M. S. Zachariasen, S. W. Sofie and R. A. Walker "Mitigating Carbon Formation with Al_2TiO_5 Enhanced Solid Oxide Fuel Cell Anodes" *J. Phys. Chem. C* in press (2019).

Personnel:

1 Ph.D. conferred (Dr. Madison McCleary); 2 in progress (Martha Welander & Kyle Allemeier)

1 MSE Conferred (John Kent); 1 in progress

3 B.Sc. conferred (1 to USMC; 1 into Ph.D. program in Materials Science (Boise State), 1 to ZAF Energy)

Material Composition - mechanically mixed and infiltrated

- Oxidized surfaces similar for both doping methods
- Secondary phases present after ALT doping
- Rough phase (circled) and small particle phase (boxed)
- Scale bar = $1 \mu m$

<u>Material Composition – redox cycling leads to little material change</u>

After 1 redox cycle

After 5 redox cycles

<u>Material Composition – secondary phase segregation</u>

Elemental analysis (nano-Auger) of rough and particle phases (with 10% mechanically mixed)

Material Composition

1000

2000

Wavenumber (cm⁻¹)

3000

Intensity (a.u.)

Elemental analysis (nano-Auger) of rough and particle phases (with 10% mechanically mixed)

200 nm

Mechanical effects of adding ALT to Ni-YSZ - three techniques

• Ring on Ring (equi-biaxial flexure testing)

$$\sigma_f = \frac{3F}{2\pi h^2} \cdot \{(1+\nu) \cdot \frac{D_S^2 - D_L^2}{2D^2} + (1+\nu)ln\frac{D_S}{D_L}\}$$

• Modulus of Rupture

$$\sigma = \frac{3FL}{2bd^2}$$
$$p(s) = e^{-(\frac{\sigma}{\sigma_0})^m}$$

Weibull modulus Equation

• Micro-indentation as strength surrogate (Vickers Hardness)

$$egin{aligned} A &= rac{d^2}{2\sin(136^\circ/2)} \ HV &= rac{F}{A} pprox rac{1.8544F}{d^2} \quad [ext{kgf/mm}^2] \end{aligned}$$

- Rapid assessment
- Non-destructive
- Reuse of same sample after successive thermal/redox cycles

Mechanical effects of adding ALT to Ni-YSZ - three techniques

• Ring on Ring (equi-biaxial flexure testing)

$$\sigma_f = \frac{3F}{2\pi h^2} \cdot \{(1+\nu) \cdot \frac{D_S^2 - D_L^2}{2D^2} + (1+\nu)ln\frac{D_S}{D_L}\}$$

• Modulus of Rupture

$$\sigma = \frac{3FL}{2bd^2}$$
$$p(s) = e^{-\left(\frac{\sigma}{\sigma_0}\right)^m}$$

Weibull modulus Equation

• *Micro-indentation as strength surrogate (Vickers Hardness)*

$$egin{aligned} A &= rac{d^2}{2\sin(136^\circ/2)} \ HV &= rac{F}{A} pprox rac{1.8544F}{d^2} \quad [ext{kgf/mm}^2] \end{aligned}$$

- Rapid assessment
- Non-destructive
- Reuse of same sample after successive thermal/redox cycles

- Positive trend in hardness
- NiO precursor effects
- Average 0 / 5 / 10% ALT: 804 – 905 – 942 HV
- JT Baker (0.88 µm grain size) poor performance
- FCM (1.12 μm grain size) consistently high

1000 925 Hardness Value (HV) 850 775 700 625 - AA Black oxidized FCM oxidized - AA Green oxidized Inframat oxidized - Avg 550 0% 3% 5% 10% % % ALT 1000 900 Hardness Value (HV) 800 700 600 500 Undoped NiO-YSZ Doped with 5% ALT Doped with 10% ALT Avg 804 905 942

Oxidized Hardness Values

- Positive trend in hardness with ALT loading
- NiO precursor effects
- Average 0 / 5 / 10% ALT: 135 – 166 – 198 HV
- Hardness scales with modulus of rupture measurements!

Previous Studies	Un-doped (MPa)	5% ALT (MPa)
Ring on Ring	119	157.8
3-pt bending	120	168

• Trends persist with thermal cycling (5 deep thermal cycles)

⁽Fractured in reduced state)

- Intergranular fracture (low energy fracture) present for undoped and 1 wt% ALT
- Transgranular fracture (high energy fracture) present for 5 and 10 wt% ALT
- Highest strength at 5 wt% ALT doping for both mechanically mixed and infiltrated samples
- Secondary phases enable the material to better resist the strain buildup due to redox cycling
- 5% ALT loading optimizes balance between strength and electrochemical performance
- Benefits transfer from the bulk materials (2 mm thickness) to the thin layers ($\leq 500 \ \mu m$)

(Fractured in reduced state)

- Intergranular fracture (low energy fracture) present for undoped and 1 wt% ALT
- Transgranular fracture (high energy fracture) present for 5 and 10 wt% ALT
- Highest strength at 5 wt% ALT doping for both mechanically mixed and infiltrated samples
- Secondary phases enable the material to better resist the strain buildup due to redox cycling
- 5% ALT loading optimizes balance between strength and electrochemical performance
- Benefits transfer from the bulk materials (2 mm thickness) to the thin layers ($\leq 500 \ \mu m$)

Correlate electrochemical data with operando materials specific Raman spectra

Correlate electrochemical data with operando materials specific Raman spectra

Does ALT improve resilience to reduction/oxidation cycling?

Procedure:

- 800°C, dry H₂
- Measure LSV and EIS benchmarks
- Operate galvanostatically for 20 min with H2
- Eliminate H₂ while still drawing current
- Stop operation when anode begins to oxidize
- Re-reduce anode, make benchmark measurements and repeat
- Device 'failure' defined as being unable to produce 50% original I_{max}

Welander, M. M.; Zachariasen, M. S.; Hunt, C. D.; Sofie, S. W.; Walker, R. A. J. Electrochem. Soc. 2018, 165 (3), F152–F157.

• Steep rise in overpotential correlates with appearance of NiO

• Better initial performance with ALT

• Better performance with ALT after cycling

Pure Cell

ALT Doped Cell

- ALT enhanced Ni-YSZ anodes >2x more resilient
- Biggest change is in bulk (or series) resistance (R_B)
- *Ex situ* SEM show loss of material from electrode/electrolyte boundary

- ALT enhanced Ni-YSZ anodes >2x more resilient to *electrochemical* redox cycling
- ALT enhanced Ni-YSZ anodes $\geq 3x$ more resilient to *environmental* O₂ redox cycling
- Steam redox cycling eventually leads to Ni-YSZ anode failure; ALT anodes don't fail
- ALT enhanced anodes are less susceptible to coking (with CH_4).

<u>Current efforts – developing anode supported assemblies with ALT</u>

3 Layers

• Anode

• Electrolyte

• Cathode

• Dense

• Porous

•

- ALT enhanced Ni-YSZ anodes >2x more resilient •
- Biggest change is in bulk (or series) resistance (R_B)
- *Ex situ* SEM show loss of material from electrode/electrolyte boundary •

<u>Current efforts – developing anode supported assemblies with ALT</u>

- Tape casting
- Anode support: $0.5 \pm 0.1 \text{ mm}$
- Functional layer: $30 \pm 10 \ \mu m$
- Electrolyte: $10 \pm 5 \ \mu m$
- Cathode: $40 \pm 20 \ \mu m$

Current efforts - developing anode supported assemblies with ALT

- ASC: > 1A/cm²
- ALT in functional layer leads to small loss of performance
- ALT in support layer leads to larger loss in performance
- Early indicators are that support and functional layers need higher Ni loadings

Current efforts – Developing strategies for infiltrating tubular SOFCs

- Atrex Ni-YSZ anode material shows similar mechanical enhancements with ALT
- ALT slows degradation in anodes made with Atrex supplied Ni-YSZ in ESCs
- Working out kinks for homemade ASCs before infiltrating Atrex units
- ALT-enhanced tubular ASCs to be tested at Atrex Energy

<u>Timeline</u>

C. Milestone Log

Task	Milestone title	Planned Completion Date	Verification method
1.0	Project Management Plan	10/31/17	PMP file approved
1.0	Kickoff Meeting	11/30/17	Presentation file
2.1	Planar anode fabrication and testing	5/30/18	Laboratory benchmarks for mechanical strength and initial performance
2.2	Completion of mechanically mixed v. infiltration studies	8/31/18	Recommendation for method of introducing ALT <i>and</i> % loading by mass
3.1.	<i>Operando</i> Raman and electrochemical testing	2/28/19	Correlations between performance, composition and history to guide Tasks 2.1, 2.2 and 4.2
3.2	Fracture testing	5/31/19	Correlations between strength, composition and history to guide Tasks 2.1, 2.2 and 4.2
3.3	Thermal and electrochemical analysis	5/31/19	Correlations between stability, composition and history to guide Tasks 2.1, 2.2 and 4.2
4.1	Coordinate fabrication methods and specifications	8/31/18	Methods and procedures for large cell fabrication
4.2	. Fabricate cells & benchmark testing	11/30/18	First 500 hour tests on planar assemblies at FCE
4.3.	Independent testing at commercial facility	6/30/19	500 hour tests for planar and tubular assemblies
4.4.	Technology transfer/IP negotiations; Follow-on	8/31/19	Patents and/or Licensing agreements STTR/SBIR?

(in progress)

 \checkmark

 \checkmark

(in progress)

